884 resultados para Prediction error method
Resumo:
When speech is in competition with interfering sources in rooms, monaural indicators of intelligibility fail to take account of the listener’s abilities to separate target speech from interfering sounds using the binaural system. In order to incorporate these segregation abilities and their susceptibility to reverberation, Lavandier and Culling [J. Acoust. Soc. Am. 127, 387–399 (2010)] proposed a model which combines effects of better-ear listening and binaural unmasking. A computationally efficient version of this model is evaluated here under more realistic conditions that include head shadow, multiple stationary noise sources, and real-room acoustics. Three experiments are presented in which speech reception thresholds were measured in the presence of one to three interferers using real-room listening over headphones, simulated by convolving anechoic stimuli with binaural room impulse-responses measured with dummy-head transducers in five rooms. Without fitting any parameter of the model, there was close correspondence between measured and predicted differences in threshold across all tested conditions. The model’s components of better-ear listening and binaural unmasking were validated both in isolation and in combination. The computational efficiency of this prediction method allows the generation of complex “intelligibility maps” from room designs. © 2012 Acoustical Society of America
Resumo:
The prediction of Northern Hemisphere (NH) extratropical cyclones by nine different ensemble prediction systems(EPSs), archived as part of The Observing System Research and Predictability Experiment (THORPEX) Interactive Grand Global Ensemble (TIGGE), has recently been explored using a cyclone tracking approach. This paper provides a continuation of this work, extending the analysis to the Southern Hemisphere (SH). While the EPSs have larger error in all cyclone properties in the SH, the relative performance of the different EPSs remains broadly consistent between the two hemispheres. Some interesting differences are also shown. The Chinese Meteorological Administration (CMA) EPS has a significantly lower level of performance in the SH compared to the NH. Previous NH results showed that the Centro de Previsao de Tempo e Estudos Climaticos (CPTEC) EPS underpredicts cyclone intensity. The results of this current study show that this bias is significantly larger in the SH. The CPTEC EPS also has very little spread in both hemispheres. As with the NH results, cyclone propagation speed is underpredicted by all the EPSs in the SH. To investigate this further, the bias was also computed for theECMWFhigh-resolution deterministic forecast. The bias was significantly smaller than the lower resolution ECMWF EPS.
Resumo:
A number of new and newly improved methods for predicting protein structure developed by the Jones–University College London group were used to make predictions for the CASP6 experiment. Structures were predicted with a combination of fold recognition methods (mGenTHREADER, nFOLD, and THREADER) and a substantially enhanced version of FRAGFOLD, our fragment assembly method. Attempts at automatic domain parsing were made using DomPred and DomSSEA, which are based on a secondary structure parsing algorithm and additionally for DomPred, a simple local sequence alignment scoring function. Disorder prediction was carried out using a new SVM-based version of DISOPRED. Attempts were also made at domain docking and “microdomain” folding in order to build complete chain models for some targets.
Resumo:
An automatic method for recognizing natively disordered regions from amino acid sequence is described and benchmarked against predictors that were assessed at the latest critical assessment of techniques for protein structure prediction (CASP) experiment. The method attains a Wilcoxon score of 90.0, which represents a statistically significant improvement on the methods evaluated on the same targets at CASP. The classifier, DISOPRED2, was used to estimate the frequency of native disorder in several representative genomes from the three kingdoms of life. Putative, long (>30 residue) disordered segments are found to occur in 2.0% of archaean, 4.2% of eubacterial and 33.0% of eukaryotic proteins. The function of proteins with long predicted regions of disorder was investigated using the gene ontology annotations supplied with the Saccharomyces genome database. The analysis of the yeast proteome suggests that proteins containing disorder are often located in the cell nucleus and are involved in the regulation of transcription and cell signalling. The results also indicate that native disorder is associated with the molecular functions of kinase activity and nucleic acid binding.
Resumo:
World-wide structural genomics initiatives are rapidly accumulating structures for which limited functional information is available. Additionally, state-of-the art structural prediction programs are now capable of generating at least low resolution structural models of target proteins. Accurate detection and classification of functional sites within both solved and modelled protein structures therefore represents an important challenge. We present a fully automatic site detection method, FuncSite, that uses neural network classifiers to predict the location and type of functionally important sites in protein structures. The method is designed primarily to require only backbone residue positions without the need for specific side-chain atoms to be present. In order to highlight effective site detection in low resolution structural models FuncSite was used to screen model proteins generated using mGenTHREADER on a set of newly released structures. We found effective metal site detection even for moderate quality protein models illustrating the robustness of the method.
Resumo:
Motivation: A new method that uses support vector machines (SVMs) to predict protein secondary structure is described and evaluated. The study is designed to develop a reliable prediction method using an alternative technique and to investigate the applicability of SVMs to this type of bioinformatics problem. Methods: Binary SVMs are trained to discriminate between two structural classes. The binary classifiers are combined in several ways to predict multi-class secondary structure. Results: The average three-state prediction accuracy per protein (Q3) is estimated by cross-validation to be 77.07 ± 0.26% with a segment overlap (Sov) score of 73.32 ± 0.39%. The SVM performs similarly to the 'state-of-the-art' PSIPRED prediction method on a non-homologous test set of 121 proteins despite being trained on substantially fewer examples. A simple consensus of the SVM, PSIPRED and PROFsec achieves significantly higher prediction accuracy than the individual methods. Availability: The SVM classifier is available from the authors. Work is in progress to make the method available on-line and to integrate the SVM predictions into the PSIPRED server.
Resumo:
Motivation: In order to enhance genome annotation, the fully automatic fold recognition method GenTHREADER has been improved and benchmarked. The previous version of GenTHREADER consisted of a simple neural network which was trained to combine sequence alignment score, length information and energy potentials derived from threading into a single score representing the relationship between two proteins, as designated by CATH. The improved version incorporates PSI-BLAST searches, which have been jumpstarted with structural alignment profiles from FSSP, and now also makes use of PSIPRED predicted secondary structure and bi-directional scoring in order to calculate the final alignment score. Pairwise potentials and solvation potentials are calculated from the given sequence alignment which are then used as inputs to a multi-layer, feed-forward neural network, along with the alignment score, alignment length and sequence length. The neural network has also been expanded to accommodate the secondary structure element alignment (SSEA) score as an extra input and it is now trained to learn the FSSP Z-score as a measurement of similarity between two proteins. Results: The improvements made to GenTHREADER increase the number of remote homologues that can be detected with a low error rate, implying higher reliability of score, whilst also increasing the quality of the models produced. We find that up to five times as many true positives can be detected with low error rate per query. Total MaxSub score is doubled at low false positive rates using the improved method.
Resumo:
The PSIPRED protein structure prediction server allows users to submit a protein sequence, perform a prediction of their choice and receive the results of the prediction both textually via e-mail and graphically via the web. The user may select one of three prediction methods to apply to their sequence: PSIPRED, a highly accurate secondary structure prediction method; MEMSAT 2, a new version of a widely used transmembrane topology prediction method; or GenTHREADER, a sequence profile based fold recognition method.
Resumo:
In numerical weather prediction (NWP) data assimilation (DA) methods are used to combine available observations with numerical model estimates. This is done by minimising measures of error on both observations and model estimates with more weight given to data that can be more trusted. For any DA method an estimate of the initial forecast error covariance matrix is required. For convective scale data assimilation, however, the properties of the error covariances are not well understood. An effective way to investigate covariance properties in the presence of convection is to use an ensemble-based method for which an estimate of the error covariance is readily available at each time step. In this work, we investigate the performance of the ensemble square root filter (EnSRF) in the presence of cloud growth applied to an idealised 1D convective column model of the atmosphere. We show that the EnSRF performs well in capturing cloud growth, but the ensemble does not cope well with discontinuities introduced into the system by parameterised rain. The state estimates lose accuracy, and more importantly the ensemble is unable to capture the spread (variance) of the estimates correctly. We also find, counter-intuitively, that by reducing the spatial frequency of observations and/or the accuracy of the observations, the ensemble is able to capture the states and their variability successfully across all regimes.
Resumo:
Assimilation of temperature observations into an ocean model near the equator often results in a dynamically unbalanced state with unrealistic overturning circulations. The way in which these circulations arise from systematic errors in the model or its forcing is discussed. A scheme is proposed, based on the theory of state augmentation, which uses the departures of the model state from the observations to update slowly evolving bias fields. Results are summarized from an experiment applying this bias correction scheme to an ocean general circulation model. They show that the method produces more balanced analyses and a better fit to the temperature observations.
Resumo:
Data assimilation aims to incorporate measured observations into a dynamical system model in order to produce accurate estimates of all the current (and future) state variables of the system. The optimal estimates minimize a variational principle and can be found using adjoint methods. The model equations are treated as strong constraints on the problem. In reality, the model does not represent the system behaviour exactly and errors arise due to lack of resolution and inaccuracies in physical parameters, boundary conditions and forcing terms. A technique for estimating systematic and time-correlated errors as part of the variational assimilation procedure is described here. The modified method determines a correction term that compensates for model error and leads to improved predictions of the system states. The technique is illustrated in two test cases. Applications to the 1-D nonlinear shallow water equations demonstrate the effectiveness of the new procedure.
Resumo:
Following a malicious or accidental atmospheric release in an outdoor environment it is essential for first responders to ensure safety by identifying areas where human life may be in danger. For this to happen quickly, reliable information is needed on the source strength and location, and the type of chemical agent released. We present here an inverse modelling technique that estimates the source strength and location of such a release, together with the uncertainty in those estimates, using a limited number of measurements of concentration from a network of chemical sensors considering a single, steady, ground-level source. The technique is evaluated using data from a set of dispersion experiments conducted in a meteorological wind tunnel, where simultaneous measurements of concentration time series were obtained in the plume from a ground-level point-source emission of a passive tracer. In particular, we analyze the response to the number of sensors deployed and their arrangement, and to sampling and model errors. We find that the inverse algorithm can generate acceptable estimates of the source characteristics with as few as four sensors, providing these are well-placed and that the sampling error is controlled. Configurations with at least three sensors in a profile across the plume were found to be superior to other arrangements examined. Analysis of the influence of sampling error due to the use of short averaging times showed that the uncertainty in the source estimates grew as the sampling time decreased. This demonstrated that averaging times greater than about 5min (full scale time) lead to acceptable accuracy.
Resumo:
We investigate the error dynamics for cycled data assimilation systems, such that the inverse problem of state determination is solved at tk, k = 1, 2, 3, ..., with a first guess given by the state propagated via a dynamical system model from time tk − 1 to time tk. In particular, for nonlinear dynamical systems that are Lipschitz continuous with respect to their initial states, we provide deterministic estimates for the development of the error ||ek|| := ||x(a)k − x(t)k|| between the estimated state x(a) and the true state x(t) over time. Clearly, observation error of size δ > 0 leads to an estimation error in every assimilation step. These errors can accumulate, if they are not (a) controlled in the reconstruction and (b) damped by the dynamical system under consideration. A data assimilation method is called stable, if the error in the estimate is bounded in time by some constant C. The key task of this work is to provide estimates for the error ||ek||, depending on the size δ of the observation error, the reconstruction operator Rα, the observation operator H and the Lipschitz constants K(1) and K(2) on the lower and higher modes of controlling the damping behaviour of the dynamics. We show that systems can be stabilized by choosing α sufficiently small, but the bound C will then depend on the data error δ in the form c||Rα||δ with some constant c. Since ||Rα|| → ∞ for α → 0, the constant might be large. Numerical examples for this behaviour in the nonlinear case are provided using a (low-dimensional) Lorenz '63 system.
Resumo:
Prediction mechanism is necessary for human visual motion to compensate a delay of sensory-motor system. In a previous study, “proactive control” was discussed as one example of predictive function of human beings, in which motion of hands preceded the virtual moving target in visual tracking experiments. To study the roles of the positional-error correction mechanism and the prediction mechanism, we carried out an intermittently-visual tracking experiment where a circular orbit is segmented into the target-visible regions and the target-invisible regions. Main results found in this research were following. A rhythmic component appeared in the tracer velocity when the target velocity was relatively high. The period of the rhythm in the brain obtained from environmental stimuli is shortened more than 10%. The shortening of the period of rhythm in the brain accelerates the hand motion as soon as the visual information is cut-off, and causes the precedence of hand motion to the target motion. Although the precedence of the hand in the blind region is reset by the environmental information when the target enters the visible region, the hand motion precedes the target in average when the predictive mechanism dominates the error-corrective mechanism.
Resumo:
We consider the numerical treatment of second kind integral equations on the real line of the form ∅(s) = ∫_(-∞)^(+∞)▒〖κ(s-t)z(t)ϕ(t)dt,s=R〗 (abbreviated ϕ= ψ+K_z ϕ) in which K ϵ L_1 (R), z ϵ L_∞ (R) and ψ ϵ BC(R), the space of bounded continuous functions on R, are assumed known and ϕ ϵ BC(R) is to be determined. We first derive sharp error estimates for the finite section approximation (reducing the range of integration to [-A, A]) via bounds on (1-K_z )^(-1)as an operator on spaces of weighted continuous functions. Numerical solution by a simple discrete collocation method on a uniform grid on R is then analysed: in the case when z is compactly supported this leads to a coefficient matrix which allows a rapid matrix-vector multiply via the FFT. To utilise this possibility we propose a modified two-grid iteration, a feature of which is that the coarse grid matrix is approximated by a banded matrix, and analyse convergence and computational cost. In cases where z is not compactly supported a combined finite section and two-grid algorithm can be applied and we extend the analysis to this case. As an application we consider acoustic scattering in the half-plane with a Robin or impedance boundary condition which we formulate as a boundary integral equation of the class studied. Our final result is that if z (related to the boundary impedance in the application) takes values in an appropriate compact subset Q of the complex plane, then the difference between ϕ(s)and its finite section approximation computed numerically using the iterative scheme proposed is ≤C_1 [kh log〖(1⁄kh)+(1-Θ)^((-1)⁄2) (kA)^((-1)⁄2) 〗 ] in the interval [-ΘA,ΘA](Θ<1) for kh sufficiently small, where k is the wavenumber and h the grid spacing. Moreover this numerical approximation can be computed in ≤C_2 N logN operations, where N = 2A/h is the number of degrees of freedom. The values of the constants C1 and C2 depend only on the set Q and not on the wavenumber k or the support of z.