882 resultados para Polyethylene-glycol
Resumo:
The quasi-static and dynamic behaviour of Linear Low Density Polyethylene (LLDPE) and two LLDPE nanocomposites were studied. Nanocomposites consisting of LLDPE filled with 1% carbon black and 0.5% nanoclay fillers, by weight, were considered. Under quasi-static tensile loading, an improvement in the energy absorbing capability was achieved by adding 1% carbon black fillers. However, during quasi-static puncture and dynamic impact loading, the advantage provided by the fillers was lost. Thermal softening due to adiabatic heating under high strain rate deformation and difference s in the state of stress are considered as reasons for this reduction. © 2011 Published by Elsevier Ltd.
Resumo:
The merits and demerits of cotton, polyethylene and combination of the two materials ascertained on the basis of cost, wear and tear, maintenance, total catch and qualitative analysis of the catch are discussed by making comparative fishing experiments with the three trawl gears made of these materials. The study can be concluded with a suggestion for switching over to polyethylene twisted monofilaments for better, in case of bottom trawls without in any way adversely affecting the catch of shrimps and at the same time for enhanced fish catch. Even though the combination net is found to be equal in efficiency as the polyethylene net this idea cannot be conveniently adopted from the point of view of economy.
Resumo:
Results of comparative fishing operations conducted with three nets of identical design made of nylon, twisted polyethylene monofilament and high density polyethylene (HDPE) tape twines are presented in this communication. Since the tape net recorded the highest prawn and fish catch, monofilament and nylon following in order, it can be recommended to the fishing industry as one of the cheapest and effective fishing materials evolved for trawl fabrication.
Resumo:
Photodegradation of three types of polyethylene twines namely, polyethylene fibrillated tape twine, polyethylene flat tape twine and polyethylene monofilament twines were studied by exposing them to sunlight and artificial UV radiation. The percentage residual strength varied in the samples, the monofilament with the highest residual strength followed by fibrillated tape twine and flat tape twine. A plot of the difference between the breaking strengths of the fibrillated tape twine and the mono filament twines against any given period of exposure exhibited a linear relationship
Resumo:
The effect of strain rate upon the uniaxial response of Ultra High Molecular-weight Polyethylene (UHMWPE) fibres, yarns and laminates of lay-up [0/90]48 has been measured in both the 0/90 and ±45 configurations. The tensile strength of the matrix-dominated ±45 laminate is two orders of magnitude less than that of the fibre-dominated 0/90 laminate, and is more sensitive to strain rate. A piezoelectric force sensor device was developed to obtain the high strain rate data, and this achieved a rise time of less than 1 μs. It is found that the failure strength (and failure strain) of the yarn is almost insensitive to strain rate within the range (10 -1-103 s-1). At low strain rates (below 10 -1 s-1), creep of the yarn dominates and the failure strain increases with diminishing strain rate. The tensile strength of the dry yarn exceeds that of the laminate by about 20%. Tests on single fibres exceed the strength of the yarn by 20%. © 2013 Elsevier Ltd. All rights reserved.
Resumo:
Hot-pressed laminates with a [0/90]48 lay-up, consisting of 83% by volume of ultra high molecular-weight polyethylene (UHMWPE) fibres, and 17% by volume of polyurethane (PU) matrix, were cut into cantilever beams and subjected to transverse end-loading. The collapse mechanisms were observed both visually and by X-ray scans. Short beams deform elastically and collapse plastically in longitudinal shear, with a shear strength comparable to that observed in double notch, interlaminar shear tests. In contrast, long cantilever beams deform in bending and collapse via a plastic hinge at the built-in end of the beam. The plastic hinge is formed by two wedge-shaped microbuckle zones that grow in size and in intensity with increasing hinge rotation. This new mode of microbuckling under macroscopic bending involves both elastic bending and shearing of the plies, and plastic shear of the interface between each ply. The double-wedge pattern contrasts with the more usual parallel-sided plastic microbuckle that occurs in uniaxial compression. Finite element simulations and analytical models give additional insight into the dominant material and geometric parameters that dictate the collapse response of the UHMWPE composite beam in bending. Detailed comparisons between the observed and predicted collapse responses are used in order to construct a constitutive model for laminated UHMWPE composites. © 2013 Elsevier Ltd.
Study On Dissociation Of Propane Hydrate By Injecting High Concentration Of Ethylene Glycol Solution
Resumo:
The dissociation behaviors of propane hydrate by high concentration alcohols inhibitors injection were investigated. Methanol (30.0, 60.1, 80.2, and 99.5 wt %) and ethylene glycol (30.0, 60.1, 69.8, 80.2, and 99.5 wt %) solution were injected, respectively, as alcohols inhibitors in 3.5 L transparent reactor. It is shown that the average dissociation rates of propane hydrate injecting methanol and ethylene glycol solution are 0.02059-0.04535 and 0.0302-0.0606 mol.min(-1).L-1, respectively. The average dissociation rates increase with the mass concentration increase of alcohols solution, and it is the biggest when 99.5 wt % ethylene glycol solution was injected. The presence of alcohols accelerates gas hydrate dissociation and reduces the total need of external energy to dissociate the hydrates. Density differences act as driving force, causing the acceleration effects of ethylene glycol on dissociation behaviors of propane hydrate are better than that of methanol with the same injecting flux and mass concentration.
Resumo:
This article investigates the gas production behavior from methane hydrate (MH) in porous sediment by injecting ethylene glycol (EG) solution with the different concentrations and the different injection rates in an one-dimensional experimental apparatus. The results suggest that the gas production process can be divided into the four stages: (1) the initial injection, (2) the EG diluteness, (3) the hydrate dissociation, and (4) the remained gas output. Nevertheless, the water production rate keeps nearly constant during the whole production process. The production efficiency is affected by both the EG concentration and the EG injection rate, and it reaches a maximum with the EG concentration of 60 wt %.