801 resultados para Plastic morphology


Relevância:

20.00% 20.00%

Publicador:

Resumo:

We studied the distribution of NADPH-diaphorase activity in the visual cortex of normal adult New World monkeys (Saimiri sciureus) using the malic enzyme "indirect" method. NADPH-diaphorase neuropil activity had a heterogeneous distribution. In coronal sections, it had a clear laminar pattern that was coincident with Nissl-stained layers. In tangential sections, we observed blobs in supragranular layers of V1 and stripes throughout the entire V2. We quantified and compared the tangential distribution of NADPH-diaphorase and cytochrome oxidase blobs in adjacent sections of the supragranular layers of V1. Although their spatial distributions were rather similar, the two enzymes did not always overlap. The histochemical reaction also revealed two different types of stained cells: a slightly stained subpopulation and a subgroup of deeply stained neurons resembling a Golgi impregnation. These neurons were sparsely spined non-pyramidal cells. Their dendritic arbors were very well stained but their axons were not always evident. In the gray matter, heavily stained neurons showed different dendritic arbor morphologies. However, most of the strongly reactive cells lay in the subjacent white matter, where they presented a more homogenous morphology. Our results demonstrate that the pattern of NADPH-diaphorase activity is similar to that previously described in Old World monkeys

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The objective of this Master´s Thesis was to conduct a wide scale preliminary survey regarding the package requirements of a cultured dairy package, and to compare the currently used material polystyrene to other suitable packaging materials. Polystyrene has a long history of use in dairy cups, but in recent years its price has increased significantly compared to other common packaging materials. The overall environmental effects of a package and a package material are today a part of designing a sustainable product life cycle. In addition, in certain contexts there has been discussion of the risks posed by styrene polymer for the environment and for humans. These risks are also discussed in this thesis. Polystyrene (PS) is still the most widely used material in dairy cups. In recent years, polypropylene (PP) cups have appeared in increasing numbers on market shelves. This study focuses on the differences of the suitable polymers and examines the suitability of alternative “suitable” polymers with regards to dairy packaging. Aside from focusing on the cup manufacturer, this thesis also examines its subject matter from the viewpoint of the dairy customer, as well as observing the concrete implications of material changes in the overall value chain. It was known in advance that material permeability would be one of the determining factors and that gas transmission testing would be a significant part of the thesis. Mechanical tests were the second part of the testing process, providing information regarding package strength and protectiveness during the package’s life cycle. Production efficiency, along with uninterrupted stable production, was another important factor that was taken into consideration. These two issues are sometimes neglected in similar contexts due to their self-evident nature. In addition, materials used in production may have a surprising significance to the production and efficiency. Consistent high quality is also partly based on material selection. All of the aforementioned factors have been documented and the results have been analyzed by the development team at Coveris Rigid Finland. Coveris is now calculating the total finance effects and capacities should the material changes be implemented in practice. There are many factors in favor of switching to polypropylene at the moment. The overall production costs, as well as the environmental effects of resin production are the primary influences for said switch from the converters’ perspective.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Using cellulosic reinforcement to produce plastic composites is a globally growing trend. One of such materials are wood-plastic composites, which are an extensively studied group of materials for which the global industry is looking for new applications. Issues such as bondability, durability and fire resistance still require development to improve the usability of the wood-plastic composite material. Improvement of the usability of wood-plastic composites is studied in this thesis through the effects of using selected modification technology in wood and plastic industry. The applied modification methods are surface by mechanical abrasion and plasma, chemical impregnation of wood flour, and structural modification by the co-extrusion process. The study shows that the properties of WPC can be influenced by the selected modification methods. The selected methods are also found to be able to result as improvement in the properties of the material. The may also affect other than just the targeted properties of the end-product, either in a positive or a negative manner. Therefore modification as performance improvement should be considered as a caseby- case study. Introducing WPC materials for new applications can be done by using modification technology. Structuralmodification can possibly be used to reduce material costs of the modified WPC material.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Background: Controversy exists concerning indications and outcomes of major bariatric surgery procedures. Massive weight loss after bariatric surgery leads to excess skin with functional and aesthetic impairments. The aim of this study was to investigate the major bariatric surgery procedures and their outcomes in two specific subgroups of morbidly obese patients, ≥55-year-olds and the superobese. Further aims were to evaluate whether the preoperative weight loss correlates with laparoscopic gastric bypass complications. The prevalence and impact of excess skin and the desire for body contouring after bariatric surgery were also studied. Patients and Methods: Data from patients who underwent Laparoscopic Adjustable Gastric Banding (LAGB) and Laparoscopic Roux-en-Y Gastric Bypass (LRYGB) at Vaasa Central Hospital were collected and postoperative outcomes were evaluated according to the BMI, age and preoperative weight loss. Patients who had undergone bariatric surgery procedures were asked to complete a questionnaire to estimate any impairment due to redundant skin and to analyse each patient’s desire for body contouring by area. Results: No significant difference was found in operative time, hospital stay, or overall early postoperative morbidity between LAGB and LRYGB. Mean excess weight loss percents (EWL%) at 6 and 12 months after LRYGB were significantly higher. A significant difference was found in operative time favouring patients <55 years. Intraoperative complications were significantly more frequent in the group aged >55 years. No significant difference was detected in overall postoperative morbidity rates. A significant difference was found in operative time and hospital stay favouring all patients who lost weight preoperatively. Most patients reported problems with redundant skin, especially on the abdomen, upper arms and rear/buttocks, which impaired daily physical activity in half of them. Excess skin was significantly associated with female gender, weight loss and ΔBMI. Patients with a WL >20 kg, ΔBMI ≥10 kg/m2 and an EWL % > 50 showed a significantly surplus skin discomfort (p < 0.001). Most patients desired body contouring surgery, with high or very high desire for waist/abdomen (62.2%), upper arm (37.6%), chest/breast (28.3%), and rear/buttock (35.6%) contouring. Conclusions: LRYGB is effective and safe in superobese (BMI >50) and elderly (>55 years) patients. A preoperative weight loss >5% is recommended to improve the outcomes and reduce complications. A WL >20 kg, ΔBMI ≥10 kg/m2 and an EWL % > 50 are associated with a higher functional discomfort due to redundant skin and to a stronger desire for body contouring plastic surgery.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The mechanical and hygroscopic properties of paper and board are factors affecting the whole lifecycle of a product, including paper/board quality, production, converting, and material and energy savings. The progress of shrinkage profiles, loose edges of web, baggy web causing wrinkling and misregistration in printing are examples of factors affecting runnability and end product quality in the drying section and converting processes, where paper or board is treated as a moving web. The structural properties and internal stresses or plastic strain differences built up during production also cause the end-product defects related to distortion of the shape of the product such as sheet or box. The objective of this work was to construct a model capable of capturing the characteristic behavior of hygroscopic orthotropic material under moisture change, during different external in-plane stretch or stress conditions. Two independent experimental models were constructed: the elasto-plastic material model and the hygroexpansivity-shrinkage model. Both describe the structural properties of the sheet with a fiber orientation probability distribution, and both are functions of the dry solids content and fiber orientation anisotropy index. The anisotropy index, introduced in this work, simplifies the procedure of determining the constitutive parameters of the material model and the hygroexpansion coefficients in different in-plane directions of the orthotropic sheet. The mathematically consistent elasto-plastic material model and the dry solids content dependent hygroexpansivity have been constructed over the entire range from wet to dry. The presented elastoplastic and hygroexpansivity-shrinkage models can be used in an analytical approach to estimate the plastic strain and shrinkage in simple one-dimensional cases. For studies of the combined and more complicated effects of hygro-elasto-plastic behavior, both models were implemented in a finite element program for a numerical solution. The finite element approach also offered possibilities for studying different structural variations of orthotropic planar material, as well as local buckling behavior and internal stress situations of the sheet or web generated by local strain differences. A comparison of the simulation examples presented in this work to results published earlier confirms that the hygro-elasto-plastic model provides at least qualitatively reasonable estimates. The application potential of the hygro-elasto-plastic model is versatile, including several phenomena and defects appearing in the drying, converting and end-use conditions of the paper or board webs and products, or in other corresponding complex planar materials.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We determined the effect of stretching applied once a week to the soleus muscle immobilized in the shortened position on muscle fiber morphology. Twenty-six male Wistar rats weighing 269 ± 26 g were divided into three groups. Group I, the left soleus was immobilized in the shortened position for 3 weeks; group II, the soleus was immobilized in the shortened position and stretched once a week for 3 weeks; group III, the soleus was submitted only to stretching once a week for 3 weeks. The medial part of the soleus muscle was frozen for histology and muscle fiber area evaluation and the lateral part was used for the determination of number and length of serial sarcomeres. Soleus muscle submitted only to immobilization showed a reduction in weight (44 ± 6%, P = 0.002), in serial sarcomere number (23 ± 15%) and in cross-sectional area of the fibers (37 ± 31%, P < 0.001) compared to the contralateral muscles. The muscle that was immobilized and stretched showed less muscle fiber atrophy than the muscles only immobilized (P < 0.05). Surprisingly, in the muscles submitted only to stretching, fiber area was decreased compared to the contralateral muscle (2548 ± 659 vs 2961 ± 806 µm², respectively, P < 0.05). In conclusion, stretching applied once a week for 40 min to the soleus muscle immobilized in the shortened position was not sufficient to prevent the reduction of muscle weight and of serial sarcomere number, but provided significant protection against muscle fiber atrophy. In contrast, stretching normal muscles once a week caused a reduction in muscle fiber area.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The aim of the present study was to determine the effect of stretching applied every 3 days to the soleus muscle immobilized in the shortened position on muscle fiber morphology. Eighteen 16-week-old Wistar rats were used and divided into three groups of 6 animals each: a) the left soleus muscle was immobilized in the shortened position for 3 weeks; b) during immobilization, the soleus was stretched for 40 min every 3 days; c) the non-immobilized soleus was only stretched. Left and right soleus muscles were examined. One portion of the soleus was frozen for histology and muscle fiber area evaluation, while the other portion was used to identify the number and length of serial sarcomeres. Immobilized muscles (group A) showed a significant decrease in weight (44 ± 6%), length (19 ± 7%), serial sarcomere number (23 ± 15%), and fiber area (37 ± 31%) compared to the contralateral muscles (P < 0.05, paired Student t-test). The immobilized and stretched soleus (group B) showed a similar reduction but milder muscle fiber atrophy compared to the only immobilized group (22 ± 40 vs 37 ± 31%, respectively; P < 0.001, ANOVA test). Muscles submitted only to stretching (group C) significantly increased the length (5 ± 2%), serial sarcomere number (4 ± 4%), and fiber area (16 ± 44%) compared to the contralateral muscles (P < 0.05, paired Student t-test). In conclusion, stretching applied every 3 days to immobilized muscles did not prevent the muscle shortening, but reduced muscle atrophy. Stretching sessions induced hypertrophic effects in the control muscles. These results support the use of muscle stretching in sports and rehabilitation.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The morphology of the skin of the mutant hairless USP mouse was studied by histological, histochemical and immunohistochemical methods and compared to the skin of BALB/c mice. Representative sections of the dorsal skin from mice of both strains aged 18 days, and 1, 3, 6, and 8 months were studied. Sections stained with hematoxylin and eosin showed cystic formations called utricles and dermal cysts in the dermis that increased in size and number during growth. Skin thickness increased significantly at 8 months. Sections stained with picrosirius and examined with polarized light, displayed different colors, suggesting different thicknesses of dermal collagen fibers (probably types I and III). Weigert, Verhoeff and resorcin-fuchsin stains revealed fibers of the elastic system. The PAS and Alcian blue methods revealed neutral and acid glycosaminoglycans in the skin ground substance of both mouse strains. Immunohistochemical staining for fibronectin and laminin did not show differences between the mutant and BALB/c mice. Mast cells stained by the Gomori method and macrophages positive for HAM 56 antibodies were observed in both mouse strains. Except for the presence of enlarged cysts in the hairless strain, no qualitative differences were found during development of the skin of BALB/c and the mutant hairless mice.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Diets rich in saturated fatty acids are one of the most important causes of atherosclerosis in men, and have been replaced with diets rich in unsaturated fatty acids (UFA) for the prevention of this disorder. However, the effect of UFA on myocardial performance, metabolism and morphology has not been completely characterized. The objective of the present investigation was to evaluate the effects of a UFA-rich diet on cardiac muscle function, oxidative stress, and morphology. Sixty-day-old male Wistar rats were fed a control (N = 8) or a UFA-rich diet (N = 8) for 60 days. Myocardial performance was studied in isolated papillary muscle by isometric and isotonic contractions under basal conditions after calcium chloride (5.2 mM) and ß-adrenergic stimulation with 1.0 µM isoproterenol. Fragments of the left ventricle free wall were used to study oxidative stress and were analyzed by light microscopy, and the myocardial ultrastructure was examined in left ventricle papillary muscle. After 60 days the UFA-rich diet did not change myocardial function. However, it caused high lipid hydroperoxide (176 ± 5 vs 158 ± 5, P < 0.0005) and low catalase (7 ± 1 vs 9 ± 1, P < 0.005) and superoxide-dismutase (18 ± 2 vs 27 ± 5, P < 0.005) levels, and discrete morphological changes in UFA-rich diet hearts such as lipid deposits and mitochondrial membrane alterations compared to control rats. These data show that a UFA-rich diet caused myocardial oxidative stress and mild structural alterations, but did not change mechanical function.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The main objective of this thesis is to study the impact of different mineral fillers and fire retardants on the reaction-to-fire properties of extruded/coextruded wood-plastic composites (WPCs). The impact of additives on the flammability properties of WPCs is studied by cone calorimetry. The studied properties are ignition time, peak heat release rate, total heat release, total smoke production, and mass loss rate. The effects of mineral fillers and fire retardants were found to vary with the type of additive, the type of additive combinations, the amount of additives, as well as the production method of the WPCs. The study shows that talc can be used to improve the properties of extruded WPCs. Especially ignition time, peak heat release rate and mass loss rate were found to be improved significantly by talc. The most significant improvement in the fire retardancy of coextruded WPCs was achieved in combinations of natural graphite and melamine. Ignition time, peak heat release rate and total smoke production were improved essentially. High increase in smoke production was found in samples where the amount of ammonium polyphosphate was 10% or higher. Coextrusion as a structural modification was found as a promising way to improve the flammability properties of composite materials in a cost-effective way.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We investigated the contribution of the duration of overdistention (DOD) to rat bladder function and morphology and explored its possible molecular mechanisms. Bladder overdistention was induced in male Sprague-Dawley rats (200-250 g) by an infusion of saline. Forty rats were divided into 5 groups submitted to different DOD, i.e., 1, 2, 4, and 8 h, and control. Bladder function was evaluated by cystometry. Morphological changes were observed by light and transmission electron microscopy. Compared to control (44.567 ± 3.472 cmH2O), the maximum detrusor pressure of groups with 2-, 4- and 8-h DOD decreased significantly (means ± SEM): 32.774 ± 3.726, 31.321 ± 2.847, and 29.238 ± 3.724 cmH2O. With the increase of DOD, inflammatory infiltration and impairment of ultrastructure were more obvious in bladder tissue. Compared to control (1.90 ± 0.77), the apoptotic indexes of groups with 1-, 2-, 4-, and 8-h DOD increased significantly (6.47 ± 2.10, 10.66 ± 1.97, 13.91 ± 2.69, and 18.33 ± 3.28%). Compared to control (0.147 ± 0.031/0.234 ± 0.038 caspase 3/β-actin and Bax/Bcl-2 ratios), both caspase 3/β-actin and Bax/Bcl-2 ratios of 1-, 2-, 4-, and 8-h DOD increased significantly (0.292 ± 0.037/0.508 ± 0.174, 0.723 ± 0.173/1.745 ± 0.471, 1.104 ± 0.245/4.000 ± 1.048, and 1.345 ± 0.409/8.398 ± 3.332). DOD plays an important role in impairment of vesical function and structure. With DOD, pro-apoptotic factors increase and anti-apoptotic factors decrease, possibly contributing to the functional deterioration and morphological changes of the bladder.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The cortical layer 1 contains mainly small interneurons, which have traditionally been classified according to their axonal morphology. The dendritic morphology of these cells, however, has received little attention and remains ill defined. Very little is known about how the dendritic morphology and spatial distribution of these cells may relate to functional neuronal properties. We used biocytin labeling and whole cell patch clamp recordings, associated with digital reconstruction and quantitative morphological analysis, to assess correlations between dendritic morphology, spatial distribution and membrane properties of rat layer 1 neurons. A total of 106 cells were recorded, labeled and subjected to morphological analysis. Based on the quantitative patterns of their dendritic arbor, cells were divided into four major morphotypes: horizontal, radial, ascendant, and descendant cells. Descendant cells exhibited a highly distinct spatial distribution in relation to other morphotypes, suggesting that they may have a distinct function in these cortical circuits. A significant difference was also found in the distribution of firing patterns between each morphotype and between the neuronal populations of each sublayer. Passive membrane properties were, however, statistically homogeneous among all subgroups. We speculate that the differences observed in active membrane properties might be related to differences in the synaptic input of specific types of afferent fibers and to differences in the computational roles of each morphotype in layer 1 circuits. Our findings provide new insights into dendritic morphology and neuronal spatial distribution in layer 1 circuits, indicating that variations in these properties may be correlated with distinct physiological functions.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Cardiac remodeling involves changes in heart shape, size, structure, and function after injury to the myocardium. The proinflammatory adaptor protein myeloid differentiation protein 88 (MyD88) contributes to cardiac remodeling. To investigate whether excessive MyD88 levels initiate spontaneous cardiac remodeling at the whole-organism level, we generated a transgenic MyD88 mouse model with a cardiac-specific promoter. MyD88 mice (male, 20-30 g, n=∼80) were born at the expected Mendelian ratio and demonstrated similar morphology of the heart and cardiomyocytes with that of wild-type controls. Although heart weight was unaffected, cardiac contractility of MyD88 hearts was mildly reduced, as shown by echocardiographic examination, compared with wild-type controls. Moreover, the cardiac dysfunction phenotype was associated with elevation of ANF and BNP expression. Collectively, our data provide novel evidence of the critical role of balanced MyD88 signaling in maintaining physiological function in the adult heart.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The impact of a recycled mineral wool filler on the various properties of wood plastic composites was studied and the critical factors affecting the formation of the properties were determined. An estimation of the volume of mineral wool fiber waste generated in the European Union between the years 2010-2020 was presented. Furthermore, the effect of fiber pre-treatment on the properties of the wood plastic composites were studied, and the environmental performance of a wood plastic composite containing recycled mineral fibers was assessed. The results showed that the volumes of construction and demolition waste and new mineral wool produced in the European Union are growing annually, and therefore also the volumes of recycled mineral wool waste generated are increasing. The study showed that the addition of recycled mineral wool into composites can enhance some of the mechanical properties and increase the moisture resistance properties of the composites notably. Recycled mineral wool as a filler in wood plastic composites can also improve the fire resistance properties of composites, but it does not protect the polymer matrix from pyrolysis. Fiber pre-treatment with silane solution improved some of the mechanical properties, but generally the use of maleated polypropylene as the coupling agent led to better mechanical and moisture resistance properties. The environmental performance of recycled mineral wool as the filler in wood plastic composites was superior compared to glass fibers. According to the findings, recycled mineral wool fibers can provide a technically and environmentally viable alternative to the traditional inorganic filler materials used in wood plastic composites.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The objective of this study was to investigate the morphology, anatomy and germination behaviour of Phoenix roebelenii seeds. Biometric data were obtained by measuring 100 seeds extracted from recently harvested fruits and air-dried for one day. Four replications of 50 seeds each were previously treated with Vitavax-Thiran and then put to germinate in Sphagnum sp. in plastic trays at room temperature. Morphological details of the seeds were documented with the help of a scanning electronic microscope and then drawings were made with the help of a clear camera coupled to a stereomicroscope. Permanent lamina containing embryo sections were prepared to study its anatomy. The mean dimensions of the seeds were: length of 10.32mm, width of 5.21mm and thickness of 3.91mm. The weight of one thousand seeds was of 151.1g and the mean number of units.kg-1 was 6,600. Germination started between 27 and 58 days after sowing. The seeds are of the albuminous type, the endosperm is hard and the embryo (which is not clearly differentiated) occupies a lateral and peripheral position. During seed germination, seedling protrusion begins with the opening of an operculum, through which the cotyledon petiole is emitted with the embryonic axis at its tip. The portion of the cotyledon petiole that remains inside the seeds acts as a haustorium for the absorption of nutrients from the endosperm. The plumule emerges through a rift in the posterior part of the cotyledon. Secondary roots are observed to grow from the anterior part of the primary root.