995 resultados para Plasma Focus
Resumo:
Plasma polymerisation was used to deposit thin oligomeric films of terpinen-4-ol on a range of substrates. The coatings were examined in terms of their chemical properties and surface architecture to ascertain the changes in chemical composition as a result of exposure to the plasma field. The antifouling and antimicrobial activity of oligomeric terpinen-4-ol coatings were then examined against such human pathogens as Staphylococcus aureus, Pseudomonas aeruginosa and Staphylococcus epidermis. The bacterial adhesion patterns were investigated using scanning electron microscopy (SEM), atomic force microscopy (AFM) and confocal scanning laser microscopy (CSLM).
Resumo:
Owing to the structural flexibility, uncomplicated processing and manufacturing capabilities, plasma polymers are the subject of active academic as well as industrial research. Polymer thin films prepared from non-synthetic monomers combine desirable optical and physical properties with biocompatibility and environmental sustainability. However, the ultimate expediency and implementation of such materials will dependent on the stability of these properties under varied environmental conditions. Polyterpenol thin films were manufactured at different deposition powers. Under ambient conditions, the bulk of ageing occurred within first 150h after deposition and was attributed to oxidation and volumetric relaxation. Films observed for further 12 months showed no significant changes in thickness or refractive index. Thermal degradation behaviour indicated thermal stability increased for the films manufactured at higher RF powers. Annealing the films to 405°C resulted in full degradation, with retention between 0.29 and 0.99%, indicating films' potential as sacrificial material.
Resumo:
Poly(linalool) thin films were fabricated using RF plasma polymerisation. All films were found to be smooth, defect-free surfaces with average roughness of 0.44 nm. The FTIR analysis of the polymer showed a notable reduction in –OH moiety and complete dissociation of C=C unsaturation compared to the monomer, and presence of a ketone band absent from the spectrum of the monomer. Poly(linalool) were characterised by chain branching and a large quantity of short polymer chains. Films were optically transparent, with refractive index and extinction coefficient of 1.55 and 0.001 (at 500 nm) respectively, indicating a potential application as an encapsulating (protective) coating for circuit boards. The optical band gap was calculated to be 2.82 eV, which is in the semiconducting energy gap region.
Resumo:
This paper describes the synthesis and characterization of a novel organic polymer coating for the prevention of the growth of Pseudomonas aeruginosa on the solid surface of three-dimensional objects. Substrata were encapsulated with polyterpenol thin films prepared from terpinen-4-ol using radio frequency plasma enhanced chemical vapor deposition. Terpinen-4-ol is a constituent of tea tree oil with known antibacterial properties. The influence of deposition power on the chemical structure, surface composition, and ultimately the antibacterial inhibitory activity of the resulting polyterpenol thin films was studied using X-ray photoelectron spectroscopy (XPS), water contact angle measurement, atomic force microscopy (AFM), and 3-D interactive visualization and statistical approximation of the topographic profiles. The experimental results were consistent with those predicted by molecular simulations. The extent of bacterial attachment and extracellular polymeric substances (EPS) production was analyzed using scanning electron microscopy (SEM) and confocal scanning laser microscopy (CSLM). Polyterpenol films deposited at lower power were particularly effective against P. aeruginosa due to the preservation of original terpinen-4-ol molecules in the film structure. The proposed antimicrobial and antifouling coating can be potentially integrated into medical and other clinically relevant devices to prevent bacterial growth and to minimize bacteria-associated adverse host responses.
Resumo:
Radio frequency plasma enhanced chemical vapor deposition is currently used to fabricate a broad range of functional coatings. This work described fabrication and characterization of a novel bioactive coating, polyterpenol, for encapsulation of three-dimensional indwelling medical devices. The materials are synthesized from monoterpene alcohols under different input power conditions. The chemical composition and structure of the polyterpenol thin films were determined by Xray photoelectron spectroscopy (XPS), Fourier transform infrared (FTIR) spectroscopy, contact angle measurements, and atomic force microscopy (AFM). The application of polyterpenol coating to the substrate reduced surface roughness from 1.5 to 0.4 of a nanometer, and increased the water contact angle from to 9 to 72 degrees. The extent of attachment and extracellular polysaccharide (EPS) production of two medically relevant pathogens, Staphylococcus aureus and Staphylococcus epidermis were analyzed using scanning electron microscopy (SEM) and confocal scanning laser microscopy (CSLM). Application of polyterpenol coating fabricated at 10 W significantly inhibited attachment and growth of both pathogens compared to unmodified substrates, whilst addition of 50 W films resulted in an increased attachment, proliferation and EPS production by both types of bacteria when compared to unmodified surface. Marked dissimilarity in bacterial response between two coatings was attributed to changes in surface chemistry, nano-architecture and surface energy of polymer thin films deposited under different input power conditions.
Resumo:
Terpinen-4-ol is the main constituent of Melaleuca alternifolia essential oil known for its biocidal and anti-inflammatory properties. The possibility of fabricating polymer thin films from terpinen-4-ol using radio frequency (RF) plasma polymerisation for the prevention of the growth of Pseudomonas aeruginosa was investigated, and the properties of the resultant films compared against their biologically active precursor. Films fabricated at 10 W prevented bacterial attachment and EPS secretion, whilst polyterpenol films deposited at 25 W demonstrated no biocidal activity against the pathogen.
Resumo:
Recent advancements in the area of organic polymer applications demand novel and advanced materials with desirable surface, optical and electrical properties to employ in emerging technologies. This study examines the fabrication and characterization of polymer thin films from non-synthetic Terpinen-4-ol monomer using radio frequency plasma polymerization. The optical properties, thickness and roughness of the thin films were studied in the wavelength range 200–1000 nm using ellipsometry. The polymer thin films of thickness from 100 nm to 1000 nm were fabricated and the films exhibited smooth and defect-free surfaces. At 500 nm wavelength, the refractive index and extinction coefficient were found to be 1.55 and 0.0007 respectively. The energy gap was estimated to be 2.67 eV, the value falling into the semiconducting Eg region. The obtained optical and surface properties of Terpinen-4-ol based films substantiate their candidacy as a promising low-cost material with potential applications in electronics, optics, and biomedical industries.
Resumo:
Atmospheric-pressure plasma (APP) has been successfully used to treat several types of cancers in vivo and in vitro, with the effect being primarily attributed to the generation of reactive oxygen species (ROS). However, the mechanisms by which APP induces apoptosis in cancer cells require further elucidation. In this study, the effects of APP on the expression of 500 genes in melanoma Mel007 cancer cells were examined. Pro-apoptotic phorbol-12-myristate-13-acetate-induced protein (PMAIP1), also known as NOXA, was highly expressed as a result of APP treatment in a dose-dependent manner. Blocking of ROS using scavenger NAC or silencing of NOXA gene by RNA interference inhibited the APP-induced NOXA genes upregulation and impaired caspases 3/7 mediated apoptosis, confirming the important role plasma-generated ROS species and pro-apoptotic NOXA play in APP-induced cancer cell death.
Resumo:
The oxidation of NADH by mouse liver plasma membranes was shown to be accompanied by the formation of H2O2. The rate of H2O2 formation was less than one-tenth the rate of oxygen uptake and much slower than the rate of reduction of artificial electron acceptors. The optimum pH for this reaction was 7.0 and theK m value for NADH was found to be 3×10–6 M. The H2O2-generating system of plasma membranes was inhibited by quinacrine and azide, thus distinguishing it from similar activities in endoplasmic reticulum and mitochondria. Both NADH and NADPH served as substrates for plasma membrane H2O2 generation. Superoxide dismutase and adriamycin inhibited the reaction. Vanadate, known to stimulate the oxidation of NADH by plasma membranes, did not increase the formation of H2O2. In view of the growing evidence that H2O2 can be involved in metabolic control, the formation of H2O2 by a plasma membrane NAD(P)H oxidase system may be pertinent to control sites at the plasma membrane.
Resumo:
The surface instability of a semi-infinite plasma immersed in a high frequency field is investigated. When the natural Langmuir frequency of the surface is nearly equal to the frequency of the high frequency field, the dispersion relation predicts build-up of oscillations with a growth rate comparable with the real part of the frequency. Threshold values above which the instability is possible are derived.
Resumo:
Surface instability of a collisionless semi-infinite current carrying plasma is studied. The semi-infinite plasma bounded by a plane surface is under the influence of a high frequency (hf) field. There are two classes of surface modes. One is a normal extension of zero high frequency field and the other due entirely to the presence ofhf field. As expected, with the increase in thehf field, the growth rates of the surface instabilities decrease. There are regions defined by the electron drift velocityu where the unstable surface and bulk regions overlap. The interesting result is that unlike the bulk plasma, there is a stable region on theu-axis flanked by two unstable regions. The width of this stable region increases with the increase in the field strength.
Resumo:
A novel methodology for describing genotype by environment interactions estimated from multi-environment field trials is described and an empirical example using an extensive trial network of eucalypts is presented. The network of experiments containing 65 eucalypts was established in 38 replicated field trials across the tropics and subtropics of eastern Australia, with a selection of well-tested species used to provide a more detailed examination of productivity differentials across environmental gradients. By focusing on changes in species’ productivity across environmental gradients, the results are applicable for all species established across the range of environments evaluated in the trial network and simultaneously classify species and environments so that results may be applied across the landscape. The methodology developed was able to explain most (93 %) of the variation in the selected species relative changes in productivity across the various environmental variables examined. Responses were primarily regulated by changes in variables related to water availability and secondarily by temperature related variables. Clustering and ordination can identify groups of species with similar physiological responses to environment and may also guide the parameterisation and calibration of process based models of plant growth. Ordination was particularly useful in the identification of species with distinct environmental response patterns that would be useful as probes for extracting more information from future trials.
Resumo:
The concept of focus on opportunities describes how many new goals, options, and possibilities employees believe to have in their personal future at work. In this multi-sample, multi-method study, the authors investigated relationships between focus on opportunities and general and daily work engagement and the moderating role of focus on opportunities on between- and within-person relationships between job control and work engagement. Based on a social cognitive theory framework on the motivating potential of a future temporal focus, it was hypothesized that focus on opportunities is positively related to work engagement. Further, consistent with the notion of compensatory resources, it was expected that job control is not related to work engagement among employees with a high focus on opportunities, whereas job control, as an external resource of the work environment, is positively related to work engagement among employees with a low focus on opportunities. Both a cross-sectional survey study (N=174) and a daily diary study (N=64) supported the hypotheses. The study contributes to research on the job demands-resources model as it emphasizes the role of focus on opportunities as a motivational factor in the relationship between job control and work engagement.
Resumo:
Combining upper echelons and lifespan theories, we investigated the mediating effect of focus on opportunities on the negative relationship between business owners' age and venture growth. We also expected that mental health moderates the negative relationship between business owners' age and focus on opportunities. Path analytic findings based on data from 84 business owners (mean age = 44, range 24-74) supported these hypotheses. Findings suggest that focus on opportunities is a psychological mechanism that links business owners' age with venture growth. Our findings also indicate that mental health helps maintain a high level of focus on opportunities with increasing age.
Resumo:
The concept of focus on opportunities describes how many new goals, options, and possibilities employees believe to have in their personal future at work. This study investigated the specific and shared effects of age, job complexity, and the use of successful aging strategies called selection, optimization, and compensation (SOC) in predicting focus on opportunities. Results of data collected from 133 employees of one company (mean age = 38 years, SD = 13, range 16–65 years) showed that age was negatively, and job complexity and use of SOC strategies were positively related to focus on opportunities. In addition, older employees in high-complexity jobs and older employees in low-complexity jobs with high use of SOC strategies were better able to maintain a focus on opportunities than older employees in low-complexity jobs with low use of SOC strategies.