954 resultados para Plant species - climate interaction
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Xylella fastidiosa is a phytopathogen that causes diseases in different plant species. The development of disease symptoms is associated to the blockage of the xylem vessels caused by biofilm formation. In this study, we evaluated the sensitivity of biofilm and planktonic cells to copper, one of the most important antimicrobial agents used in agriculture. We measured the exopolysaccharides (EPS) content in biofilm and planktonic cells and used real-time reverse transcription polymerase chain reaction to evaluate the expression of the genes encoding proteins involved in cation/multidrug extrusion (acrA/B, mexE/czcA, and metI) and others associated with different copper resistance mechanisms (copB, cutA1, cutA2, and cutC) in the X. fastidiosa biofilm formed in two different media. We confirmed that biofilms are less susceptible to copper than planktonic cells. The amount of EPS seems to be directly related to the resistance and it varies according to the media where the cells are grown. The same was observed for gene expression. Nevertheless, some genes seem to have a greater importance in biofilm cells resistance to copper. Our results suggest a synergistic effect between diffusion barriers and other mechanisms associated with bacterial resistance in this phytopathogen. These mechanisms are important for a bacterium that is constantly under stress conditions in the host.
Resumo:
Vegetated riparian buffer strips have been established in Southern Quebec (Canada) in order to intercept nutrients such as nitrate (NO(3)(-)) and protect water quality near agricultural fields. Buffer strips may also favour denitrification through a combination of high soil moisture, NO(3)(-) and carbon supply, which could lead to the production of nitrous oxide (N(2)O), a greenhouse gas. Denitrification could be further amplified by the presence of earthworms, or by plant species that promote earthworm and bacterial activity in soils. Soils from four farms, comprising maize fields and adjacent buffer strips, were sampled in the fall of 2008. A total of six earthworm species were found, but average earthworm biomass did not differ between buffer strips and maize agroecoecosystems. Nitrate concentrations and net nitrification rates were higher in the maize fields than in the buffer strips: there was no difference in N(2)O production in soils collected from the two sampling locations. Potential denitrification, measured by acetylene inhibition, varied by two orders of magnitude, depending on experimental conditions: when amended with H(2)O or with H(2)O + NO3-, potential denitrification was higher (P < 0.05) in soils from buffer strips than from maize fields. Potential denitrification was highest in soils amended with H(2)O+glucose, or with H(2)O+ NO(3)(-) + glucose. Using microcosms, we tested the effect of litter-soil mixtures on earthworm growth, and the effect of earthworm-litter-soil mixtures on potential denitrification. Based on four categories of chemical assays, litters of woody species (oak, apple, Rhododendron) were generally of lower nutritional quality than litter from agronomic species (alfalfa, switchgrass, corn stover). Alfalfa litter had the most positive effect, whereas apple litter had the most negative effect, on earthworm growth. Potential denitrification was 2-4 times higher in earthworm-litter-soil mixtures than in plain soil. Litter treatments that included corn stover had lower potential denitrification than those that included alfalfa or switchgrass, whereas litter treatments that included oak had lower potential denitrification than those that included apple or Rhododendron. Results suggest that potential N(2)O emissions may be higher in riparian buffer strips than in adjacent maize fields, that N(2)O emissions in buffer strips may be amplified by comminuting earthworms, and that plant litters that reduce earthworm growth may not be best at mitigating N(2)O emissions. (c) 2010 Elsevier B.V. All rights reserved.
Resumo:
A general procedure was developed for the simultaneous separation of flavonoids and naphthopyrones from the polar extracts of the capitula from Brazilian everlasting plants is described. The ethanolic extracts of several species from the Paepalanthus genus (Eriocaulaceae) were fractionated by droplet countercurrent chromatography followed by column chromatography on pvp and sephadex LH-20. The isolated compounds were identified by spectrometric analysis and comparison with literature data. This approach led to the isolation of 9-O-β-D-glucopyranosylpaepalantine (1), 9-O-β-D-glucopyranosyl (1→6)allopyranosylpaepalantine (2), along with the flavonoids 6-methoxykaempferol (3), 3-O-β-D-glucopyranosyl-6-methoxykaempferol (4), patuletin (5), 3-Oβ-D-rutinosylpatuletin (6), 7-O-β-D-glucopyranosylquercetagetin (7), 5,7,4'-trihydroxy-6,3'-dimethoxyflavone (8) and 5,7,4'-trihydroxy-6,3'-dimethoxyflavonol (9).
Resumo:
Xylella fastidiosa causes citrus variegated chlorosis (CVC). Information generated from the X. fastidiosa genome project is being used to study the underlying mechanisms responsible for pathogenicity. However, the lack of an experimental host other than citrus to study plant-X. fastidiosa interaction has been an obstacle to accelerated progress in this area. We present here results of three experiments that demonstrated that tobacco could be an important experimental host for X. fastidiosa. All tobacco plants inoculated with a citrus strain of X. fastidiosa expressed unequivocal symptoms, consisting of orange leaf lesions, approximately 2 months after injection of the pathogen. CVC symptoms were observed in citrus 3 to 6 months after inoculation. The pathogen was readily detected in symptomatic tobacco plants by polymerase chain reaction (PCR) and phase contrast microscopy. In addition, X. fastidiosa was reisolated on agar plates in 4 of 10 plants. Scanning electron microscopy analysis of cross sections of stems and petioles revealed the presence of rod shaped bacteria restricted to the xylem of inoculated plants. The cell size was within the limit typical of X. fastidiosa.
Resumo:
We studied the frugivorous birds and their fruiting plants during two years in a forest fragment in Viçosa, Minas Gerais State, Brazil. Our aim was to identify the importance of birds and plants based on an importance index that comprise both the number of interactions and interaction exclusiveness. Twentynine bird species and 25 plant species were recorded. Small birds (< 100 g) comprised 85% of the interactions, and Chiroxiphia caudata reached the largest importance index (0.296), with 12 interactions, being six exclusive. Among plants, the melastome Miconia cinnamomifolia reached the largest importance index (0.277), interacting with 72.4% (21) of the bird species. This study showed that seed dispersal by small birds couldn't be underestimated because they disperse seeds of many plant species, even in pristine forests. Studies like this are also important to list the main food resources to frugivorous birds that could be used in management plans.
Resumo:
Neea theifera Oerted (Nyctaginaceae), Guapira noxia Linn. (Nyctaginaceae) and Hancornia speciosa Gomes (Apocynaceae) are plant species found in Brazilian Cerrado used popularly for the treatment of gastric ulcers. Here they are assessed for mutagenic activity by analysis of the reverse mutations induced in Salmonella typhimurium strains TA100, TA98, TA102 and TA97a, by extracts of the plants, with and without metabolic activation. Methanol and chloroform extracts of N. theifera and G. noxia and methanolic and aqueous extracts of H. speciosa were tested at five different concentrations. It was found that only the methanolic extract of H. speciosa exhibited a positive mutagenic effect, on strains TA98 and TA100 in the absence of metabolic activation. The phytochemical analysis of the species suggested that condensed tannins are the main compounds responsible for the observed effect.
Resumo:
The disturbance vicariance hypothesis (DV) has been proposed to explain speciation in Amazonia, especially its edge regions, e. g. in eastern Guiana Shield harlequin frogs (Atelopus) which are suggested to have derived from a cool-adapted Andean ancestor. In concordance with DV predictions we studied that (i) these amphibians display a natural distribution gap in central Amazonia; (ii) east of this gap they constitute a monophyletic lineage which is nested within a pre-Andean/western clade; (iii) climate envelopes of Atelopus west and east of the distribution gap show some macroclimatic divergence due to a regional climate envelope shift; (iv) geographic distributions of climate envelopes of western and eastern Atelopus range into central Amazonia but with limited spatial overlap. We tested if presence and apparent absence data points of Atelopus were homogenously distributed with Ripley's K function. A molecular phylogeny (mitochondrial 16S rRNA gene) was reconstructed using Maximum Likelihood and Bayesian Inference to study if Guianan Atelopus constitute a clade nested within a larger genus phylogeny. We focused on climate envelope divergence and geographic distribution by computing climatic envelope models with MaxEnt based on macroscale bioclimatic parameters and testing them by using Schoener's index and modified Hellinger distance. We corroborated existing DV predictions and, for the first time, formulated new DV predictions aiming on species' climate envelope change. Our results suggest that cool-adapted Andean Atelopus ancestors had dispersed into the Amazon basin and further onto the eastern Guiana Shield where, under warm conditions, they were forced to change climate envelopes. © 2010 The Author(s).
Resumo:
The purpose of this work is to evaluate the capacity of full polarimetric L band data to discriminate macrophyte species in Amazon wetland. Fieldwork was carried out almost simultaneously to the acquisition of the full polarimetric PALSAR data. Coherent and incoherent attributes were extracted from the image, and macrophyte morphological variables were measured on the ground. The image attributes and the macrophyte variables were compared in order to evaluate their application for discriminating macrophytes species. The findings suggest that polarimetric information could be adopted to discriminate plant species based on morphology, and that estimation of plant biomass and productivity could be improved by using the polarimetric information. © 2010 IEEE.
Resumo:
Mortality factors that act sequentially through the demographic transitions from seed to sapling may have critical effects on recruitment success. Understanding how habitat heterogeneity influences the causal factors that limit propagule establishment in natural populations is central to assess these demographic bottlenecks and their consequences. Bamboos often influence forest structure and dynamics and are a major factor in generating landscape complexity and habitat heterogeneity in tropical forests. To understand how patch heterogeneity influences plant recruitment we studied critical establishment stages during early recruitment of Euterpe edulis, Sloanea guianensis and Virola bicuhyba in bamboo and non-bamboo stands in the Brazilian Atlantic forest. We combined observational studies of seed rain and seedling emergence with seed addition experiments to evaluate the transition probabilities among regeneration stages within bamboo and non-bamboo stands. The relative importance of each mortality factor was evaluated by determining how the loss of propagules affected stage-specific recruitment success. Our results revealed that the seed addition treatment significantly increased seedling survivorship for all three species. E. edulis seedling survival probability increased in the addition treatment in the two stand types. However, for S. guianensis and V. bicuhyba this effect depended strongly on artificially protecting the seeds, as both species experienced increased seed and seedling losses due to post-dispersal seed predators and herbivores. Propagules of all three species had a greater probability of reaching subsequent recruitment stages when protected. The recruitment of large-seeded V. bicuhyba and E. edulis appears to be much more limited by post-dispersal factors than by dispersal limitation, whereas the small-seeded S. guianensis showed an even stronger effect of post-dispersal factors causing recruitment collapse in some situations. We demonstrated that E. edulis, S. guianensis and V. bicuhyba are especially susceptible to predation during early compared with later establishment stages and this early stage mortality can be more crucial than stand differences as determinants of successful regeneration. Among-species differences in the relative importance of dispersal vs. establishment limitation are mediated by variability in species responses to patch heterogeneity. Thus, bamboo effects on the early recruitment of non-bamboo species are patchy and species-specific, with successional bamboo patches exerting a far-reaching influence on the heterogeneity of plant species composition and abundance. © 2012 Perspectives in Plant Ecology, Evolution and Systematics.
Resumo:
Plant phenology is one of the most reliable indicators of species responses to global climate change, motivating the development of new technologies for phenological monitoring. Digital cameras or near remote systems have been efficiently applied as multi-channel imaging sensors, where leaf color information is extracted from the RGB (Red, Green, and Blue) color channels, and the changes in green levels are used to infer leafing patterns of plant species. In this scenario, texture information is a great ally for image analysis that has been little used in phenology studies. We monitored leaf-changing patterns of Cerrado savanna vegetation by taking daily digital images. We extract RGB channels from the digital images and correlate them with phenological changes. Additionally, we benefit from the inclusion of textural metrics for quantifying spatial heterogeneity. Our first goals are: (1) to test if color change information is able to characterize the phenological pattern of a group of species; (2) to test if the temporal variation in image texture is useful to distinguish plant species; and (3) to test if individuals from the same species may be automatically identified using digital images. In this paper, we present a machine learning approach based on multiscale classifiers to detect phenological patterns in the digital images. Our results indicate that: (1) extreme hours (morning and afternoon) are the best for identifying plant species; (2) different plant species present a different behavior with respect to the color change information; and (3) texture variation along temporal images is promising information for capturing phenological patterns. Based on those results, we suggest that individuals from the same species and functional group might be identified using digital images, and introduce a new tool to help phenology experts in the identification of new individuals from the same species in the image and their location on the ground. © 2013 Elsevier B.V. All rights reserved.
Resumo:
Pós-graduação em Agronomia (Horticultura) - FCA
Resumo:
Pós-graduação em Ciências Biológicas (Zoologia) - IBRC