916 resultados para Physiological traits
Resumo:
In this paper, the interaction between La3+ and microperoxidase-11 (MP-11) in the imitated physiological solution was investigated with the electrochemical method, circular dichroism (CD) and ultraviolet-visible (UV-vis) absorption spectroscopy. It was found that the interaction ways between La3+ and MP-11 are different with increasing the molar ratio of La3+ and MP-11. When the molar ratio of La3+ and MP-11 is less than 2, La3+ mainly interacts with the metacetonic acid group of the heme group in the MP-11 molecules, causing the increase in the non-planarity of the porphyrin cycle in the heme group and the decrease in the content of the random coil conformation of MP-11. These structural changes would increase the exposure extent of the electrochemical active center of MP-11 and thus, La3+ can promote the electrochemical reaction of MP-11 and its electrocatalytic activity for the reduction of H2O2 at the glassy carbon (GC) electrode. However, when the molar ratio of La3+ and MP-11 is larger than 3, except binding to the carbonyl oxygen of the metacetonic acid group in the heme group, La3+ interacts also with the oxygen-containing groups of the amides in the polypeptide chains of the MP-11 molecules, leading to the increase in the contents of the random coil conformation in the peptide of the MP-11 molecule, comparing with that for the molar ratio of less than 2.
STUDIES ON THE COORDINATION OF TB(III) AND CA(III) WITH AMINO-ACID UNDER THE PHYSIOLOGICAL CONDITION
Resumo:
Tb(Ca)-glycine, Tb(Ca)-alanine, Tb(Ca)-glycine-alanine systems were studied by potentiometry (37%, I = 0.15 mol/L NaCl). The stability constants of complexes and distribution of species in ternary system were obtained. The results show Ca
Resumo:
Heritabilities and genetic and phenotypic correlations were estimated for body weight, test diameter, and test height of the sea urchin from measurements on progeny resulting from 11 sires and 33 dams by artificial fertilization of 3 females by single males, and measurements at 8, 10, and 12 months after metamorphism. Point estimate for heritabilities based on the sire components of variance were moderate to high for body weight (0.21-0.49), test diameter (0.21-0.47), and test height (0.22-0.37). Genetic correlations were significant for body weight with test diameter (0.30similar to0.65) and test height (0.30similar to0.54) and test diameter with test height (0.31similar to0.65). Genetic correlation estimates, derived the nested design and half-sib correlation analysis used in this study, appear to provide reliable estimates. Significant phenotypic correlations were found for body weight with test diameter (0.82similar to0.86) and test height (0.49similar to0.83), and test diameter with test height (0.47similar to0.84). The phenotypic correlations for test height with body weight (0.491) and test diameter (0.467) at 12 months' of age were smaller than those earlier sampling periods.(C) 2004 Published by Elsevier B.V.
Resumo:
The shell traits and weight traits are measured in cultured populations of bay scallop, Argopecten irradians. The results of regression analysis show that the regression relationships for all the traits are significant (P < 0.01). The correlative coefficients between body weight, as well as tissue weight with shell length, shell height and shell width are significant (P < 0.05). But the correlative coefficients between the anterior and posterior auricle length with body weight as well as tissue weight are not significant (P > 0.05). The multiple regression equation is obtained to estimate live body weight and tissue weight. The above traits except anterior and posterior auricle length are used for the growth and production comparison among three cultured populations, Duncan's new multiple range procedure analysis shows that all the traits in the Lingshuiqiao (LSQ) population are much more significant than those of the other two populations (P < 0.01), and there is no significant difference between the Qipanmo (QPM) and Dalijia (DLJ) populations in all traits (P > 0.05). The results indicate that the LSQ population has a higher growth rate and is expected to be more productive than the other two populations.
Resumo:
The Zhikong Scallop, Chlamys farreri, is one of the most Important bivalve mollusks cultured in northern China However, mass mortality of the cultured C farreri has posed a serious threat to the maricultural Industry in recent years. Acute Viral Necrobiotic Virus (AVNV) is believed as an important etiological agent causing the scallop mass mortalities To understand the mechanism behind the AVNV associated scallop disease and mortality, we assessed the physiological and immune responses of C farreri to the virus infection using oxygen consumption rate, ammonium-nitrogen excretion rate, hemocyte copper, zinc superoxide dismutase gene expression, and plasma superoxide dismutase activity and alkaline phosphatase activity as indicators Scallops challenged by AVNV at 25 C developed typical disease signs 2 days after virus injection Before the disease manifested, scallop oxygen consumption and NH4+-N excretion rates rose and then fell back. Real-time PCR revealed that the hemocyte cytosol Cu, Zn SOD gene expression was upregulated followed by recovery The plasma SOD activity, however, augmented consistently following virus injection Moreover, plasma AKP activity first lowered and then elevated gradually to the highest level at 24 h post virus injection Scallops challenged by AVNV at 17 degrees C neither developed notable disease nor showed obvious responses that could be associated with the virus infection. While the results suggested a correlation between the elevated seawater temperature and the AVNV infection associated C farreri mortalities, they also indicated that the viral infection provoked multiple physiological and immune responses in the host scallops (C) 2010 Elsevier Ltd All rights reserved
Resumo:
A mechanistic model is developed to present the photosynthetic response of phytoplankton to irradiance at the physiological level. The model is operated on photosynthetic units (PSU), and each PSU is assumed to have two states: reactive and activated. Light absorption that drives a reactive PSU into the activated state results from the effective absorption of the PSU. Transitions between the two states are asymmetrical in rate. A PSU in the reactive state becomes activated much faster than it recovers from the activated state to the reactive one. The turnover time for an activated PSU to transit into the reactive one is defined by the turnover time of the electron transport chain. The present model yields a photosynthesis-irradiance curve (PE-curve) in a hyperbola, which is described by three physiological parameters: effective cross-section (sigma (PSII)), turnover time of electron transport chain (tau) and number of PSUs (N). The PE-curve has an initial slope of sigma (PSII) x N, a half-saturated irradiance of 1/(sigma (PSII)), and a maximal photosynthetic rate of Nlc at the saturated irradiance. The PE-curve from the present model is comparable to the empirical function based on the target theory described by the Poisson distribution. (C) 2001 Academic Press.
Resumo:
The locations and effects of quantitative trait loci (QTL) were estimated for nine characters for growth-related traits in the Pacific abalone (Haliotis discus hannai Ino) using a randomly amplified polymorphic DNA (RAPD), amplification fragment length polymorphism (AFLP) and SSR genetic linkage map. Twenty-eight putatively significant QTLs (LOD > 2.4) were detected for nine traits (shell length, shell width, total weight, shell weight, weight of soft part, muscle weight, gonad and digestive gland weight, mantle weight and gill weight). The percentage of phenotypic variation explained by a single QTL ranged from 8.0% to 35.9%. The significant correlations (P < 0.001) were found among all the growth-related traits, and Pearson's correlation coefficients were more than 0.81. For the female map, the QTL for growth were concentrated on groups 1 and 4 linkage maps. On the male map, the QTL that influenced growth-related traits gathered on the groups 1 and 9 linkage maps. Genetic linkage map construction and QTL analysis for growth-related traits are the basis for the marker-assisted selection and will eventually improve production and quality of the Pacific abalone.
Resumo:
Heritability and genetic and phenotypic correlations were estimated for juvenile growth traits of Pacific abalone Haliotis discus hannai Ino. The estimates were calculated from shell length and shell width measurements on progeny resulting from 12 half-sib families and 36 full-sib families obtained using artificial fertilization of mating three females to each male. The measurements were taken at 10, 20 and 30 d after fertilization. It was found that heritability estimates based on sire component ranged from 0.23 to 0.36 for shell length and 0.21 to 0.32 for shell width. Heritability estimates from dam component were larger than those from sire component at three ages, indicating presence of maternal effects, non-additive genetic effects and common environmental effects. Phenotypic correlations were significant at three ages (P < 0.05), with values of 0.92, 0.93 and 0.92, respectively. Genetic correlations from the paternal half-sib correlation analysis were highly positive at three ages, with values of 0.50, 0.78 and 0.81, respectively. The results suggest that selective breeding is an effective approach to improving growth traits of Pacific abalone stocks.
Resumo:
This paper examines the effect of inbreeding level of population on the magnitude of inbreeding depression expressed by comparing them between two cultured populations (A and B) in the hermaphroditic animal of the bay scallop Argopecten irradians irradians. Population A is expected to have less genetic variations and higher inbreeding level due to longer cultured history (20 generations) and less "ancestral" individuals (26 individuals) than population B due to shorter cultured history (4 generations) and more "ancestral" individuals (406 individuals). Two groups within each population were produced, one using self-fertilization and one using mass-mating within the same population. Selfed offspring (AS and BS) from two populations both had lower fitness components than their mass-mated counterparts (AM and BM) and exhibited inbreeding depression for all examined traits, e.g. lower hatching, less viability and slower growth, indicating that inbreeding depression is a common feature in this animal. Fitness components in all traits of offspring from population A significantly differed those from population B and the magnitude of inbreeding depression for all traits in population A with higher inbreeding level was significantly smaller than that in population B with lower inbreeding level, indicating that both fitness components and magnitude of inbreeding depression were significantly affected by inbreeding level of populations and genetic load harbored in population A may be partially purged through inbreeding. Moreover, the magnitude of inbreeding depression in the two populations both varied among traits and life history stages. The present results support the partial-dominance hypothesis of inbreeding depression. (C) 2008 Elsevier B.V. All rights reserved.
Resumo:
The aim of this study was to determine the effect of long-term cryopreservation on physiological characteristics, the antioxidant activities and lipid peroxidation of red seabream sperm which were respectively cryopreserved with 15% dimethylsulfoxide (Me2SO) for 1 month, 13 months, 26 months, 48 months and 73 months. The motility and fertility of post-thaw sperm decreased with the storage time going on. The highest motility (87.67 +/- 2.52%) was obtained in sperm cryopreserved for 1 month and the lowest (50.67 +/- 5.31%) was in sperm for 73 months. There were no significant differences (p < 0.05) in fertilization rates of sperm cryopreserved for 1 month (71.33 +/- 8.84%), 13 months (69.22 +/- 1.02%) and 26 months (60.33 +/- 2.33%); however, the sperm fertility decreased significantly for 48 months (47.22 +/- 3.89%) and 73 months (39.56 +/- 0.69%) storage. In addition, superoxide dismutase (SOD) activities of sperm were at a stable level for less than 26 months storage, then, decreased significantly after 48 months storage. Catalase (CAT) activities of sperm cryopreserved for 13 months, 26 months, 48 months and 73 months were significantly lower than that for 1 month. There were no significant differences in the malondialdehyde (MDA) level of sperm for less than 13 months storage. After 26 months storage, the concentration of MDA increased significantly, and the highest concentration (3.22 +/- 0.05 nmol/mgprot) was obtained in 73 months storage sperm. (C) 2010 Elsevier Inc. All rights reserved.
Resumo:
Experimental studies of how global changes and human activities affect plant diversity often focus on broad measures of diversity and discuss the implications of these changes for ecosystem function. We examined how experimental warming and grazing affected species within plant groups of direct importance to Tibetan pastoralists: medicinal plants used by humans and palatable plants consumed by livestock. Warming resulted in species losses from both the medicinal and palatable plant groups; however, differential relative vulnerability to warming occurred. With respect to the percent of warming-induced species losses, the overall plant community lost 27%, medicinal plants lost 21%, and non-medicinal plants lost 40% of species. Losses of palatable and non-palatable species were similar to losses in the overall plant community. The deep-rootedness of medicinal plants resulted in lowered sensitivity to warming, whereas the shallow-rootedness of non-medicinal plants resulted in greater sensitivity to warming; the variable rooting depth of palatable and non-palatable plants resulted in an intermediate response to warming. Predicting the vulnerability of plant groups to human activities can be enhanced by knowledge of plant traits, their response to specific drivers, and their distribution within plant groups. Knowledge of the mechanisms through which a driver operates, and the evolutionary interaction of plants with that driver, will aid predictions. Future steps to protect ecosystem services furnished by medicinal and palatable plants will be required under the novel stress of a warmer climate. Grazing may be an important tool in maintaining some of these services under future warming.
Resumo:
Using heterogeneous vegetation in alpine grassland through grazing is a necessary component of deintensification of livestock systems and conservation of natural environments. However, better understanding of the dynamics of animal feeding behaviour would improve pasture and livestock grazing managements, particularly in the early part of the spring season when forage is scarce. The changes in behaviour may improve the use of poor pastures. Then, enhancing management practices may conserve pasture and improve animal productivity. Grazing behaviour over 24 In periods by yaks in different physiological states (lactating, dry and replacement heifers) was recorded in the early, dry and later, germinating period of the spring season. Under conditions of inadequate forage, the physiological state of yaks was not the primary factor affecting their grazing and ruminating behaviour. Forage and sward state affected yaks' grazing and ruminating behaviour to a greater extent. Generally, yaks had higher intake and spent more time grazing and ruminating during the later part of the spring season, following germination of forage, than during the earlier dry part of the season. However, the live weight of yaks was less during pasture germination than during the early dry part of the season because the herbage mass is low, and the yaks have to expend much energy to seek feed at this particular time. (c) 2007 Elsevier B.V. All rights reserved.