937 resultados para Peripheral Aberrations
Resumo:
The high abortion rate of 45,X embryos indicates that patients with Turner syndrome and 45,X karyotype could be mosaics, in at least one phase of embryo development or cellular lineage, due to the need for the other sex chromosome presence for conceptus to be compatible with life. In cases of structural chromosomal aberrations or hidden mosaicism, conventional cytogenetic techniques can be ineffective and molecular investigation is indicated. Two hundred and fifty patients with Turner syndrome stigmata were studied and 36 who had female genitalia and had been cytogenetically diagnosed as having "pure" 45,X karyotype were selected after 100 metaphases were analyzed in order to exclude mosaicism and the presence of genomic Y-specific sequences (SRY, TSPY, and DAZ) was excluded by PCR. Genomic DNA was extracted from peripheral blood and screened by the human androgen receptor (HUMARA) assay. The HUMARA gene has a polymorphic CAG repeat and, in the presence of a second chromosome with a different HUMARA allele, a second band will be amplified by PCR. Additionally, the CAG repeats contain two methylation-sensitive HpaII enzyme restriction sites, which can be used to verify skewed inactivation. Twenty-five percent (9/36) of the cases showed a cryptic mosaicism involving a second X and approximately 14% (5/36), or 55% (5/9) of the patients with cryptic mosaicism, also presented skewed inactivation. The laboratory identification of the second X chromosome and its inactivation pattern are important for the clinical management (hormone replacement therapy, and inclusion in an oocyte donation program) and prognostic counseling of patients with Turner syndrome.
Resumo:
We have shown that the peripheral and spinal cord heme oxygenase (HO)-carbon monoxide (CO)-soluble guanylate cyclase-cGMP pathways play an important role in antinociception in the rat experimental formalin model. Our objective was to determine if there is synergism between peripheral (paw) and spinal HO-CO pathways in nociception. Rats were handled and adapted to the experimental environment for a few days before the formalin test, in which 50 µL of a 1% formalin was injected subcutaneously into the dorsal surface of the right hind paw. The animals were then observed for 1 h and the frequency of flinching behavior was taken to represent the nociceptive response. Thirty minutes before the test, rats were pretreated with intrathecal injections of the HO inhibitor, zinc deuteroporphyrin 2,4-bis glycol (ZnDPBG) or heme-lysinate, which is a substrate of the HO pathway. The paw treatments took place 20 min before the test. Low doses of ZnDPBG did not increase nociception, while a low heme-lysinate dose did not change flinching behavior after paw or spinal injections. Combined subactive spinal (50 nmol) and peripheral (40 nmol) low doses of ZnDPBG induced hypernociception (increase of 80% in the first and 25% in the second phase flinching), whereas combined spinal-peripheral heme-lysinate (50 and 30 nmol) led to second phase antinociception (40% reduction in flinching). These findings suggest a synergy between the peripheral and spinal HO-CO pathways. Local activation of the HO system probably regulates the nociception initiation in peripheral tissue and participates in buffering the emerging nociceptive signals at the peripheral and spinal sites of action. In short, an antinociceptive synergy exists between peripheral and spinal HO pathways, which may reduce the doses required and side effects.
Resumo:
Human T lymphotropic virus type 1 (HTLV-1) is the causal agent of myelopathy/tropical spastic paraparesis (HAM/TSP), a disease mediated by the immune response. HTLV-1 induces a spontaneous proliferation and production of pro-inflammatory cytokines by T cells, and increasing interferon-γ (IFN-γ) and tumor necrosis factor-α (TNF-α) levels are potentially involved in tissue damage in diseases related to HTLV-1. This exaggerated immune response is also due to an inability of the natural regulatory mechanisms to down-modulate the immune response in this group of patients. TNF-α inhibitors reduce inflammation and have been shown to improve chronic inflammatory diseases in clinical trials. The aim of this study was to evaluate the ability of pentoxifylline, forskolin, rolipram, and thalidomide to decrease in vitro production of TNF-α and IFN-γ in cells of HTLV-1-infected subjects. Participants of the study included 19 patients with HAM/TSP (mean age, 53 ± 11; male:female ratio, 1:1) and 18 HTLV-1 carriers (mean age, 47 ± 11; male:female ratio, 1:2.6). Cytokines were determined by ELISA in supernatants of mononuclear cell cultures. Pentoxifylline inhibited TNF-α and IFN-γ synthesis with the minimum dose used (50 µM). The results with forskolin were similar to those observed with pentoxifylline. The doses of rolipram used were 0.01-1 µM and the best inhibition of TNF-α production was achieved with 1 µM and for IFN-γ production it was 0.01 µM. The minimum dose of thalidomide used (1 µM) inhibited TNF-α production but thalidomide did not inhibit IFN-γ production even when the maximum dose (50 µM) was used. All drugs had an in vitro inhibitory effect on TNF-α production and, with the exception of thalidomide, all of them also decreased IFN-γ production.
Resumo:
Our objective was to investigate in conscious Sprague-Dawley (6-8 weeks, 250-300 g) female rats (N = 7 in each group) the effects of intracerebroventricularly (icv) injected adrenomedullin (ADM) on blood pressure and heart rate (HR), and to determine if ADM and calcitonin gene-related peptide (CGRP) receptors, peripheral V1 receptors or the central cholinergic system play roles in these cardiovascular effects. Blood pressure and HR were observed before and for 30 min following drug injections. The following results were obtained: 1) icv ADM (750 ng/10 µL) caused an increase in both blood pressure and HR (DMAP = 11.8 ± 2.3 mmHg and ΔHR = 39.7 ± 4.8 bpm). 2) Pretreatment with a CGRP receptor antagonist (CGRP8-37) and ADM receptor antagonist (ADM22-52) blocked the effect of central ADM on blood pressure and HR. 3) The nicotinic receptor antagonist mecamylamine (25 µg/10 µL, icv) and the muscarinic receptor antagonist atropine (5 µg/10 µL, icv) prevented the stimulating effect of ADM on blood pressure. The effect of ADM on HR was blocked only by atropine (5 µg/10 µL, icv). 4) The V1 receptor antagonist [β-mercapto-β-β-cyclopentamethylenepropionyl¹, O-me-Tyr²,Arg8]-vasopressin (V2255; 10 µg/kg), that was applied intravenously, prevented the effect of ADM on blood pressure and HR. This is the first study reporting the role of specific ADM and CGRP receptors, especially the role of nicotinic and muscarinic central cholinergic receptors and the role of peripheral V1 receptors in the increasing effects of icv ADM on blood pressure and HR.
Resumo:
Polymorphisms of the p53 gene, which participates in DNA repair, can affect the functioning of the p53 protein. The Arg and Pro variants in p53 codon 72 were shown to have different regulation properties of p53-dependent DNA repair target genes that can affect various levels of cytogenetic aberrations in chronic hepatitis B patients. The present study aimed to examine the frequency of chromosomal aberrations and the mitotic index in patients with chronic hepatitis B and their possible association with p53 gene exon 4 codon 72 Arg72Pro (Ex4+119 G>C; rs1042522) polymorphism. Fifty-eight patients with chronic hepatitis B and 30 healthy individuals were genotyped in terms of the p53 gene codon 72 Arg72Pro polymorphism by PCR-RFLP. A 72-h cell culture was performed on the same individuals and evaluated in terms of chromosomal aberrations and mitotic index. A high frequency of chromosomal aberrations and low mitotic index were detected in the patient group compared to the control group. A higher frequency of chromosomal aberrations was detected in both the patient and the control groups with a homozygous proline genotype (13 patients, 3 control subjects) compared to patients and controls with other genotypes [Arg/Pro (38 patients, 20 control subjects) and Arg/Arg (7 patients, 7 control subjects)]. We observed an increased frequency of cytogenetic aberrations in patients with chronic hepatitis B. In addition, a higher frequency of cytogenetic aberrations was observed in p53 variants having the homozygous proline genotype compared to variants having other genotypes both in patients and healthy individuals.
Resumo:
Nonsteroidal anti-inflammatory drugs (NSAIDs) have been used extensively to control inflammatory pain. Several peripheral antinociceptive mechanisms have been described, such as opioid system and NO/cGMP/KATP pathway activation. There is evidence that the cannabinoid system can also contribute to the in vivo pharmacological effects of ibuprofen and indomethacin. However, there is no evidence of the involvement of the endocannabinoid system in the peripheral antinociception induced by NSAIDs. Thus, the aim of this study was to investigate the participation of the endocannabinoid system in the peripheral antinociceptive effect of NSAIDs. All experiments were performed on male Wistar rats (160-200 g; N = 4 per group). Hyperalgesia was induced by a subcutaneous intraplantar (ipl) injection of prostaglandin E2 (PGE2, 2 μg/paw) in the rat’s hindpaw and measured by the paw pressure test 3 h after injection. The weight in grams required to elicit a nociceptive response, paw flexion, was determined as the nociceptive threshold. The hyperalgesia was calculated as the difference between the measurements made before and after PGE2, which induced hyperalgesia (mean = 83.3 ± 4.505 g). AM-251 (80 μg/paw) and AM-630 (100 μg/paw) were used as CB1 and CB2 cannabinoid receptor antagonists, respectively. Ipl injection of 40 μg dipyrone (mean = 5.825 ± 2.842 g), 20 μg diclofenac (mean = 4.825 ± 3.850 g) and 40 μg indomethacin (mean = 6.650 ± 3.611 g) elicited a local peripheral antinociceptive effect. This effect was not antagonized by ipl CB1 cannabinoid antagonist to dipyrone (mean = 5.00 ± 0.9815 g), diclofenac (mean = 2.50 ± 0.8337 g) and indomethacin (mean = 6.650 ± 4.069 g) or CB2 cannabinoid antagonist to dipyrone (mean = 1.050 ± 6.436 g), diclofenac (mean = 6.675 ± 1.368 g) and indomethacin (mean = 2.85 ± 5.01 g). Thus, cannabinoid receptors do not seem to be involved in the peripheral antinociceptive mechanism of the NSAIDs dipyrone, diclofenac and indomethacin.
Resumo:
A modification of the Bennett and Xie chronic constriction injury model of peripheral painful neuropathy was developed in rats. Under tribromoethanol anesthesia, a single ligature with 100% cotton glace thread was placed around the right sciatic nerve proximal to its trifurcation. The change in the hind paw reflex threshold after mechanical stimulation observed with this modified model was compared to the change in threshold observed in rats subjected to the Bennett and Xie or the Kim and Chung spinal ligation models. The mechanical threshold was measured with an automated electronic von Frey apparatus 0, 2, 7, and 14 days after surgery, and this threshold was compared to that measured in sham rats. All injury models produced significant hyperalgesia in the operated hind limb. The modified model produced mean ± SD thresholds in g (19.98 ± 3.08, 14.98 ± 1.86, and 13.80 ± 1.00 at 2, 7, and 14 days after surgery, respectively) similar to those obtained with the spinal ligation model (20.03 ± 1.99, 13.46 ± 2.55, and 12.46 ± 2.38 at 2, 7, and 14 days after surgery, respectively), but less variable when compared to the Bennett and Xie model (21.20 ± 8.06, 18.61 ± 7.69, and 18.76 ± 6.46 at 2, 7, and 14 days after surgery, respectively). The modified method required less surgical skill than the spinal nerve ligation model.
Resumo:
Dipyrone (Dp), 4-aminoantipyrine (AA), and antipyrine (At) delay liquid gastric emptying (GE) in rats. We evaluated adrenergic participation in this phenomenon in a study in male Wistar rats (250-300 g) pretreated subcutaneously with guanethidine (GUA), 100 mg·kg−1·day−1, or vehicle (V) for 2 days before experimental treatments. Other groups of animals were pretreated intravenously (iv) 15 min before treatment with V, prazosin (PRA; 1 mg/kg), yohimbine (YOH; 3 mg/kg), or propranolol (PRO; 4 mg/kg), or with intracerebroventricular (icv) administration of 25 µg PRO or V. The groups were treated iv with saline or with 240 µmol/kg Dp, AA, or At. GE was determined 10 min later by measuring the percentage of gastric retention (%GR) of saline labeled with phenol red 10 min after gavage. %GR (mean±SE, n=8) indicated that GUA abolished the effect of Dp (GUA vs V=31.7±1.6 vs47.1±2.3%) and of At (33.2±2.3 vs 54.7±3.6%) on GE and significantly reduced the effect of AA (48.1±3.2 vs67.2±3.1%). PRA and YOH did not modify the effect of the drugs. %GR (mean±SE, n=8) indicated that iv, but noticv, PRO abolished the effect of Dp (PROvs V=29.1±1.7 vs 46.9±2.7%) and At (30.5±1.7 vs 49±3.2%) and significantly reduced the effect of AA (48.4±2.6 vs 59.5±3.1%). These data suggest activation of peripheral β-adrenoceptors in the delayed GE induced by phenylpyrazolone derivatives.
Resumo:
Membranous nephropathy (MN), characterized by the presence of diffuse thickening of the glomerular basement membrane and subepithelial in situimmune complex disposition, is the most common cause of idiopathic nephrotic syndrome in adults, with an incidence of 5-10 per million per year. A number of studies have confirmed the relevance of several experimental insights to the pathogenesis of human MN, but the specific biomarkers of MN have not been fully elucidated. As a result, our knowledge of the alterations in histone methylation in MN is unclear. We used chromatin immunoprecipitation followed by high-throughput sequencing (ChIP-seq) to analyze the variations in a methylated histone (H3K9me3) in peripheral blood mononuclear cells from 10 MN patients and 10 healthy subjects. There were 108 genes with significantly different expression in the MN patients compared with the normal controls. In MN patients, significantly increased activity was seen in 75 H3K9me3 genes, and decreased activity was seen in 33, compared with healthy subjects. Five positive genes, DiGeorge syndrome critical region gene 6 (DGCR6), sorting nexin 16 (SNX16), contactin 4 (CNTN4), baculoviral IAP repeat containing 3 (BIRC3), and baculoviral IAP repeat containing 2 (BIRC2), were selected and quantified. There were alterations of H3K9me3 in MN patients. These may be candidates to help explain pathogenesis in MN patients. Such novel findings show that H3K9me3 may be a potential biomarker or promising target for epigenetic-based MN therapies.
Resumo:
Recognition of pathogens is performed by specific receptors in cells of the innate immune system, which may undergo modulation during the continuum of clinical manifestations of sepsis. Monocytes and neutrophils play a key role in host defense by sensing and destroying microorganisms. This study aimed to evaluate the expression of CD14 receptors on monocytes; CD66b and CXCR2 receptors on neutrophils; and TLR2, TLR4, TLR5, TLR9, and CD11b receptors on both cell types of septic patients. Seventy-seven septic patients (SP) and 40 healthy volunteers (HV) were included in the study, and blood samples were collected on day zero (D0) and after 7 days of therapy (D7). Evaluation of the cellular receptors was carried out by flow cytometry. Expression of CD14 on monocytes and of CD11b and CXCR2 on neutrophils from SP was lower than that from HV. Conversely, expression of TLR5 on monocytes and neutrophils was higher in SP compared with HV. Expression of TLR2 on the surface of neutrophils and that of TLR5 on monocytes and neutrophils of SP was lower at D7 than at D0. In addition, SP who survived showed reduced expression of TLR2 and TLR4 on the surface of neutrophils at D7 compared to D0. Expression of CXCR2 for surviving patients was higher at follow-up compared to baseline. We conclude that expression of recognition and cell signaling receptors is differentially regulated between SP and HV depending on the receptor being evaluated.
Resumo:
The T-cell immunoglobulin and mucin domain (TIM) family is associated with autoimmune diseases, but its expression level in the immune cells of systemic lupus erythematosus (SLE) patients is not known. The aim of this study was to investigate whether the expression of TIM-3 mRNA is associated with pathogenesis of SLE. Quantitative real-time reverse transcription-polymerase chain reaction analysis (qRT-PCR) was used to determine TIM-1, TIM-3, and TIM-4 mRNA expression in peripheral blood mononuclear cells (PBMCs) from 132 patients with SLE and 62 healthy controls. The PBMC surface protein expression of TIMs in PBMCs from 20 SLE patients and 15 healthy controls was assayed by flow cytometry. Only TIM-3 mRNA expression decreased significantly in SLE patients compared with healthy controls (P<0.001). No significant differences in TIM family protein expression were observed in leukocytes from SLE patients and healthy controls (P>0.05). SLE patients with lupus nephritis (LN) had a significantly lower expression of TIM-3 mRNA than those without LN (P=0.001). There was no significant difference in the expression of TIM-3 mRNA within different classes of LN (P>0.05). Correlation of TIM-3 mRNA expression with serum IgA was highly significant (r=0.425, P=0.004), but was weakly correlated with total serum protein (rs=0.283, P=0.049) and serum albumin (rs=0.297, P=0.047). TIM-3 mRNA expression was weakly correlated with the Systemic Lupus Erythematosus Disease Activity Index (SLEDAI; rs=-0.272, P=0.032). Our results suggest that below-normal expression of TIM-3 mRNA in PBMC may be involved in the pathogenesis of SLE.
Resumo:
Genetic abnormalities are critical prognostic factors for patients diagnosed with multiple myeloma (MM). This retrospective, multicenter study aimed to contribute with the genetic and clinical characterization of MM patients in a country with continental dimensions such as Brazil. Genetic abnormalities were assessed by cIg-fluorescent in situ hybridization (cIg-FISH) in a series of 152 MM patients (median age 55 years, 58.5% men). Overall, genetic abnormalities were detected in 52.7% (80/152) of patients. A 14q32 rearrangement was detected in 33.5% (n=51), including t(11;14), t(4;14) and t(14;16) in 18.4, 14.1, and 1% of cases, respectively. del(13q) was identified in 42.7% (n=65) of patients, of whom 49.2% (32/65) presented a concomitant 14q32 rearrangement. del(17p) had a frequency of 5.2% (n=8). del(13q) was associated with high plasma cell burden (≥50%, P=0.02), and del(17p) with advanced ISS stages (P=0.05) and extramedullary disease (P=0.03). t(4;14) was associated with advanced Durie-Salmon stages (P=0.008), renal insufficiency (P=0.01) and was more common in patients over 60 years old. This study reports similar frequencies of genetic abnormalities to most series worldwide, whereas the t(14;16) and del(17p), two high risk factors for newly diagnosed patients, exhibited lower frequencies. Our results expand the knowledge on the molecular features of MM in Brazil, a country where innovative therapies that could overcome a poor prognosis for some genetic abnormalities are not always available.
Resumo:
Abstract Peripheral nerves have the unique capability to regenerate after injury. Insights into regeneration of peripheral nerves after injury may have implications for neurodegenerative diseases of the nervous system. We investigated the ability of polysaccharide from Hericium erinaceus mushroom in the treatment of nerve injury following peroneal nerve crush in Sprague-Dawley rats by daily oral administration. In sensory functional recovery test, the time taken for the rats to withdraw its hind limb from contact with the hot plate was measured. The test revealed acceleration of sensory recovery in the polysaccharide group compared to negative controls. Further, peripheral nerve injury leads to changes at the remotely located DRG containing cell bodies of sensory neurons. Immunofluorescence studies showed that Akt and p38 MAPK were expressed in DRG and strongly upregulated in polysaccharide group after peripheral nerve injury. The intensity of endothelial cells antigen-1 that recognized endothelial cells in the blood vessels of distal segments in crushed nerves was significantly higher in the treated groups than in the negative control group. Our findings suggest that H. erinaceus is capable of accelerating sensory functional recovery after peripheral nerve injury and the effect involves the activation of protein kinase signaling pathways and restoration of blood-nerve barrier.
Developmental variations in the peripheral erythrocytic system of the rainbow trout, Salmo gairdneri
Resumo:
The peripheral circulating erythrocytic system of the rainbow trout, l3 almo gairdner , was examined in vitro in relation differences in the morphology and multiple hemoglobin system organization of adult and juvenile red cells. Cells were separated by velocity sedimentation under unit gravity, a procedure requiring red cell exposure to an incubation medium for periods of at least three hours. Therefore , this must provide an environment in which red cells remain in a condition approximaing normalcy. Previous studies having demonstrated commonly employed media to be ineffective in this regard , a medium was developed through modification of Cortl and saline. One of the principal additions to this me dium , norepinephrine, altered cell regulation of intracellular calcium, magnesium and chloride concentrations. Catecholamine involvement was also suggeste d in the synthes is of hemoglobin . The procedure was found to separtate cells primarily by density and, to a lesser extent, by shape. Characterization of red cells revealed two subpopulations to exist . The first comprised the bulk of the cell population, and were of greater l ength, width, volume and major:minor axis ratio than the smaller population; these were adult cells. The later, juvenile cells were of smaller overall size and were more spherical in shape . Juvenile cells also possessed fewer electrophore tpically distinguishable isomorphs than did adults with only eight of eleven hemoglobin component s typically found With maturation,hemoglobin complement with the development of three more bands. The total complement of the adult cell contained 7 cathodal bands and four anodal hemoglobin isomorphs. Bands acquired with maturation comprised the smallest percentage of the cells hemoglobin. each averaging less than one-percent of the total. Whether these additional bands are derived through degradation and reaggregation of existing components or are the product of pe gQy2 synthesis is not yet known.