987 resultados para Parametric modeling
Resumo:
The dynamical analysis of large biological regulatory networks requires the development of scalable methods for mathematical modeling. Following the approach initially introduced by Thomas, we formalize the interactions between the components of a network in terms of discrete variables, functions, and parameters. Model simulations result in directed graphs, called state transition graphs. We are particularly interested in reachability properties and asymptotic behaviors, which correspond to terminal strongly connected components (or "attractors") in the state transition graph. A well-known problem is the exponential increase of the size of state transition graphs with the number of network components, in particular when using the biologically realistic asynchronous updating assumption. To address this problem, we have developed several complementary methods enabling the analysis of the behavior of large and complex logical models: (i) the definition of transition priority classes to simplify the dynamics; (ii) a model reduction method preserving essential dynamical properties, (iii) a novel algorithm to compact state transition graphs and directly generate compressed representations, emphasizing relevant transient and asymptotic dynamical properties. The power of an approach combining these different methods is demonstrated by applying them to a recent multilevel logical model for the network controlling CD4+ T helper cell response to antigen presentation and to a dozen cytokines. This model accounts for the differentiation of canonical Th1 and Th2 lymphocytes, as well as of inflammatory Th17 and regulatory T cells, along with many hybrid subtypes. All these methods have been implemented into the software GINsim, which enables the definition, the analysis, and the simulation of logical regulatory graphs.
Multimodel inference and multimodel averaging in empirical modeling of occupational exposure levels.
Resumo:
Empirical modeling of exposure levels has been popular for identifying exposure determinants in occupational hygiene. Traditional data-driven methods used to choose a model on which to base inferences have typically not accounted for the uncertainty linked to the process of selecting the final model. Several new approaches propose making statistical inferences from a set of plausible models rather than from a single model regarded as 'best'. This paper introduces the multimodel averaging approach described in the monograph by Burnham and Anderson. In their approach, a set of plausible models are defined a priori by taking into account the sample size and previous knowledge of variables influent on exposure levels. The Akaike information criterion is then calculated to evaluate the relative support of the data for each model, expressed as Akaike weight, to be interpreted as the probability of the model being the best approximating model given the model set. The model weights can then be used to rank models, quantify the evidence favoring one over another, perform multimodel prediction, estimate the relative influence of the potential predictors and estimate multimodel-averaged effects of determinants. The whole approach is illustrated with the analysis of a data set of 1500 volatile organic compound exposure levels collected by the Institute for work and health (Lausanne, Switzerland) over 20 years, each concentration having been divided by the relevant Swiss occupational exposure limit and log-transformed before analysis. Multimodel inference represents a promising procedure for modeling exposure levels that incorporates the notion that several models can be supported by the data and permits to evaluate to a certain extent model selection uncertainty, which is seldom mentioned in current practice.
Resumo:
This paper presents an analysis of motor vehicle insurance claims relating to vehicle damage and to associated medical expenses. We use univariate severity distributions estimated with parametric and non-parametric methods. The methods are implemented using the statistical package R. Parametric analysis is limited to estimation of normal and lognormal distributions for each of the two claim types. The nonparametric analysis presented involves kernel density estimation. We illustrate the benefits of applying transformations to data prior to employing kernel based methods. We use a log-transformation and an optimal transformation amongst a class of transformations that produces symmetry in the data. The central aim of this paper is to provide educators with material that can be used in the classroom to teach statistical estimation methods, goodness of fit analysis and importantly statistical computing in the context of insurance and risk management. To this end, we have included in the Appendix of this paper all the R code that has been used in the analysis so that readers, both students and educators, can fully explore the techniques described
Resumo:
We study the properties of the well known Replicator Dynamics when applied to a finitely repeated version of the Prisoners' Dilemma game. We characterize the behavior of such dynamics under strongly simplifying assumptions (i.e. only 3 strategies are available) and show that the basin of attraction of defection shrinks as the number of repetitions increases. After discussing the difficulties involved in trying to relax the 'strongly simplifying assumptions' above, we approach the same model by means of simulations based on genetic algorithms. The resulting simulations describe a behavior of the system very close to the one predicted by the replicator dynamics without imposing any of the assumptions of the mathematical model. Our main conclusion is that mathematical and computational models are good complements for research in social sciences. Indeed, while computational models are extremely useful to extend the scope of the analysis to complex scenarios hard to analyze mathematically, formal models can be useful to verify and to explain the outcomes of computational models.
Resumo:
A mathematical model is proposed to analyze the effects of acquired immunity on the transmission of schistosomiasis in the human host. From this model the prevalence curve dependent on four parameters can be obtained. These parameters were estimated fitting the data by the maximum likelihood method. The model showed a good retrieving capacity of real data from two endemic areas of schistosomiasis: Touros, Brazil (Schistosoma mansoni) and Misungwi, Tanzania (S. haematobium). Also, the average worm burden per person and the dispersion of parasite per person in the community can be obtained from the model. In this paper, the stabilizing effects of the acquired immunity assumption in the model are assessed in terms of the epidemiological variables as follows. Regarded to the prevalence curve, we calculate the confidence interval, and related to the average worm burden and the worm dispersion in the community, the sensitivity analysis (the range of the variation) of both variables with respect to their parameters is performed.
Resumo:
Land cover classification is a key research field in remote sensing and land change science as thematic maps derived from remotely sensed data have become the basis for analyzing many socio-ecological issues. However, land cover classification remains a difficult task and it is especially challenging in heterogeneous tropical landscapes where nonetheless such maps are of great importance. The present study aims to establish an efficient classification approach to accurately map all broad land cover classes in a large, heterogeneous tropical area of Bolivia, as a basis for further studies (e.g., land cover-land use change). Specifically, we compare the performance of parametric (maximum likelihood), non-parametric (k-nearest neighbour and four different support vector machines - SVM), and hybrid classifiers, using both hard and soft (fuzzy) accuracy assessments. In addition, we test whether the inclusion of a textural index (homogeneity) in the classifications improves their performance. We classified Landsat imagery for two dates corresponding to dry and wet seasons and found that non-parametric, and particularly SVM classifiers, outperformed both parametric and hybrid classifiers. We also found that the use of the homogeneity index along with reflectance bands significantly increased the overall accuracy of all the classifications, but particularly of SVM algorithms. We observed that improvements in producer’s and user’s accuracies through the inclusion of the homogeneity index were different depending on land cover classes. Earlygrowth/degraded forests, pastures, grasslands and savanna were the classes most improved, especially with the SVM radial basis function and SVM sigmoid classifiers, though with both classifiers all land cover classes were mapped with producer’s and user’s accuracies of around 90%. Our approach seems very well suited to accurately map land cover in tropical regions, thus having the potential to contribute to conservation initiatives, climate change mitigation schemes such as REDD+, and rural development policies.
Resumo:
MOTIVATION: In silico modeling of gene regulatory networks has gained some momentum recently due to increased interest in analyzing the dynamics of biological systems. This has been further facilitated by the increasing availability of experimental data on gene-gene, protein-protein and gene-protein interactions. The two dynamical properties that are often experimentally testable are perturbations and stable steady states. Although a lot of work has been done on the identification of steady states, not much work has been reported on in silico modeling of cellular differentiation processes. RESULTS: In this manuscript, we provide algorithms based on reduced ordered binary decision diagrams (ROBDDs) for Boolean modeling of gene regulatory networks. Algorithms for synchronous and asynchronous transition models have been proposed and their corresponding computational properties have been analyzed. These algorithms allow users to compute cyclic attractors of large networks that are currently not feasible using existing software. Hereby we provide a framework to analyze the effect of multiple gene perturbation protocols, and their effect on cell differentiation processes. These algorithms were validated on the T-helper model showing the correct steady state identification and Th1-Th2 cellular differentiation process. AVAILABILITY: The software binaries for Windows and Linux platforms can be downloaded from http://si2.epfl.ch/~garg/genysis.html.
Resumo:
A factor limiting preliminary rockfall hazard mapping at regional scale is often the lack of knowledge of potential source areas. Nowadays, high resolution topographic data (LiDAR) can account for realistic landscape details even at large scale. With such fine-scale morphological variability, quantitative geomorphometric analyses become a relevant approach for delineating potential rockfall instabilities. Using digital elevation model (DEM)-based ?slope families? concept over areas of similar lithology and cliffs and screes zones available from the 1:25,000 topographic map, a susceptibility rockfall hazard map was drawn up in the canton of Vaud, Switzerland, in order to provide a relevant hazard overview. Slope surfaces over morphometrically-defined thresholds angles were considered as rockfall source zones. 3D modelling (CONEFALL) was then applied on each of the estimated source zones in order to assess the maximum runout length. Comparison with known events and other rockfall hazard assessments are in good agreement, showing that it is possible to assess rockfall activities over large areas from DEM-based parameters and topographical elements.
Resumo:
Retroelements are important evolutionary forces but can be deleterious if left uncontrolled. Members of the human APOBEC3 family of cytidine deaminases can inhibit a wide range of endogenous, as well as exogenous, retroelements. These enzymes are structurally organized in one or two domains comprising a zinc-coordinating motif. APOBEC3G contains two such domains, only the C terminal of which is endowed with editing activity, while its N-terminal counterpart binds RNA, promotes homo-oligomerization, and is necessary for packaging into human immunodeficiency virus type 1 (HIV-1) virions. Here, we performed a large-scale mutagenesis-based analysis of the APOBEC3G N terminus, testing mutants for (i) inhibition of vif-defective HIV-1 infection and Alu retrotransposition, (ii) RNA binding, and (iii) oligomerization. Furthermore, in the absence of structural information on this domain, we used homology modeling to examine the positions of functionally important residues and of residues found to be under positive selection by phylogenetic analyses of primate APOBEC3G genes. Our results reveal the importance of a predicted RNA binding dimerization interface both for packaging into HIV-1 virions and inhibition of both HIV-1 infection and Alu transposition. We further found that the HIV-1-blocking activity of APOBEC3G N-terminal mutants defective for packaging can be almost entirely rescued if their virion incorporation is forced by fusion with Vpr, indicating that the corresponding region of APOBEC3G plays little role in other aspects of its action against this pathogen. Interestingly, residues forming the APOBEC3G dimer interface are highly conserved, contrasting with the rapid evolution of two neighboring surface-exposed amino acid patches, one targeted by the Vif protein of primate lentiviruses and the other of yet-undefined function.
Resumo:
Summary: Global warming has led to an average earth surface temperature increase of about 0.7 °C in the 20th century, according to the 2007 IPCC report. In Switzerland, the temperature increase in the same period was even higher: 1.3 °C in the Northern Alps anal 1.7 °C in the Southern Alps. The impacts of this warming on ecosystems aspecially on climatically sensitive systems like the treeline ecotone -are already visible today. Alpine treeline species show increased growth rates, more establishment of young trees in forest gaps is observed in many locations and treelines are migrating upwards. With the forecasted warming, this globally visible phenomenon is expected to continue. This PhD thesis aimed to develop a set of methods and models to investigate current and future climatic treeline positions and treeline shifts in the Swiss Alps in a spatial context. The focus was therefore on: 1) the quantification of current treeline dynamics and its potential causes, 2) the evaluation and improvement of temperaturebased treeline indicators and 3) the spatial analysis and projection of past, current and future climatic treeline positions and their respective elevational shifts. The methods used involved a combination of field temperature measurements, statistical modeling and spatial modeling in a geographical information system. To determine treeline shifts and assign the respective drivers, neighborhood relationships between forest patches were analyzed using moving window algorithms. Time series regression modeling was used in the development of an air-to-soil temperature transfer model to calculate thermal treeline indicators. The indicators were then applied spatially to delineate the climatic treeline, based on interpolated temperature data. Observation of recent forest dynamics in the Swiss treeline ecotone showed that changes were mainly due to forest in-growth, but also partly to upward attitudinal shifts. The recent reduction in agricultural land-use was found to be the dominant driver of these changes. Climate-driven changes were identified only at the uppermost limits of the treeline ecotone. Seasonal mean temperature indicators were found to be the best for predicting climatic treelines. Applying dynamic seasonal delimitations and the air-to-soil temperature transfer model improved the indicators' applicability for spatial modeling. Reproducing the climatic treelines of the past 45 years revealed regionally different attitudinal shifts, the largest being located near the highest mountain mass. Modeling climatic treelines based on two IPCC climate warming scenarios predicted major shifts in treeline altitude. However, the currently-observed treeline is not expected to reach this limit easily, due to lagged reaction, possible climate feedback effects and other limiting factors. Résumé: Selon le rapport 2007 de l'IPCC, le réchauffement global a induit une augmentation de la température terrestre de 0.7 °C en moyenne au cours du 20e siècle. En Suisse, l'augmentation durant la même période a été plus importante: 1.3 °C dans les Alpes du nord et 1.7 °C dans les Alpes du sud. Les impacts de ce réchauffement sur les écosystèmes - en particuliers les systèmes sensibles comme l'écotone de la limite des arbres - sont déjà visibles aujourd'hui. Les espèces de la limite alpine des forêts ont des taux de croissance plus forts, on observe en de nombreux endroits un accroissement du nombre de jeunes arbres s'établissant dans les trouées et la limite des arbres migre vers le haut. Compte tenu du réchauffement prévu, on s'attend à ce que ce phénomène, visible globalement, persiste. Cette thèse de doctorat visait à développer un jeu de méthodes et de modèles pour étudier dans un contexte spatial la position présente et future de la limite climatique des arbres, ainsi que ses déplacements, au sein des Alpes suisses. L'étude s'est donc focalisée sur: 1) la quantification de la dynamique actuelle de la limite des arbres et ses causes potentielles, 2) l'évaluation et l'amélioration des indicateurs, basés sur la température, pour la limite des arbres et 3) l'analyse spatiale et la projection de la position climatique passée, présente et future de la limite des arbres et des déplacements altitudinaux de cette position. Les méthodes utilisées sont une combinaison de mesures de température sur le terrain, de modélisation statistique et de la modélisation spatiale à l'aide d'un système d'information géographique. Les relations de voisinage entre parcelles de forêt ont été analysées à l'aide d'algorithmes utilisant des fenêtres mobiles, afin de mesurer les déplacements de la limite des arbres et déterminer leurs causes. Un modèle de transfert de température air-sol, basé sur les modèles de régression sur séries temporelles, a été développé pour calculer des indicateurs thermiques de la limite des arbres. Les indicateurs ont ensuite été appliqués spatialement pour délimiter la limite climatique des arbres, sur la base de données de températures interpolées. L'observation de la dynamique forestière récente dans l'écotone de la limite des arbres en Suisse a montré que les changements étaient principalement dus à la fermeture des trouées, mais aussi en partie à des déplacements vers des altitudes plus élevées. Il a été montré que la récente déprise agricole était la cause principale de ces changements. Des changements dus au climat n'ont été identifiés qu'aux limites supérieures de l'écotone de la limite des arbres. Les indicateurs de température moyenne saisonnière se sont avérés le mieux convenir pour prédire la limite climatique des arbres. L'application de limites dynamiques saisonnières et du modèle de transfert de température air-sol a amélioré l'applicabilité des indicateurs pour la modélisation spatiale. La reproduction des limites climatiques des arbres durant ces 45 dernières années a mis en évidence des changements d'altitude différents selon les régions, les plus importants étant situés près du plus haut massif montagneux. La modélisation des limites climatiques des arbres d'après deux scénarios de réchauffement climatique de l'IPCC a prédit des changements majeurs de l'altitude de la limite des arbres. Toutefois, l'on ne s'attend pas à ce que la limite des arbres actuellement observée atteigne cette limite facilement, en raison du délai de réaction, d'effets rétroactifs du climat et d'autres facteurs limitants.
Resumo:
In the PhD thesis “Sound Texture Modeling” we deal with statistical modelling or textural sounds like water, wind, rain, etc. For synthesis and classification. Our initial model is based on a wavelet tree signal decomposition and the modeling of the resulting sequence by means of a parametric probabilistic model, that can be situated within the family of models trainable via expectation maximization (hidden Markov tree model ). Our model is able to capture key characteristics of the source textures (water, rain, fire, applause, crowd chatter ), and faithfully reproduces some of the sound classes. In terms of a more general taxonomy of natural events proposed by Graver, we worked on models for natural event classification and segmentation. While the event labels comprise physical interactions between materials that do not have textural propierties in their enterity, those segmentation models can help in identifying textural portions of an audio recording useful for analysis and resynthesis. Following our work on concatenative synthesis of musical instruments, we have developed a pattern-based synthesis system, that allows to sonically explore a database of units by means of their representation in a perceptual feature space. Concatenative syntyhesis with “molecules” built from sparse atomic representations also allows capture low-level correlations in perceptual audio features, while facilitating the manipulation of textural sounds based on their physical and perceptual properties. We have approached the problem of sound texture modelling for synthesis from different directions, namely a low-level signal-theoretic point of view through a wavelet transform, and a more high-level point of view driven by perceptual audio features in the concatenative synthesis setting. The developed framework provides unified approach to the high-quality resynthesis of natural texture sounds. Our research is embedded within the Metaverse 1 European project (2008-2011), where our models are contributting as low level building blocks within a semi-automated soundscape generation system.
Resumo:
Recent progress in the experimental determination of protein structures allow to understand, at a very detailed level, the molecular recognition mechanisms that are at the basis of the living matter. This level of understanding makes it possible to design rational therapeutic approaches, in which effectors molecules are adapted or created de novo to perform a given function. An example of such an approach is drug design, were small inhibitory molecules are designed using in silico simulations and tested in vitro. In this article, we present a similar approach to rationally optimize the sequence of killer T lymphocytes receptors to make them more efficient against melanoma cells. The architecture of this translational research project is presented together with its implications both at the level of basic research as well as in the clinics.
Resumo:
The great expansion in the number of genome sequencing projects has revealed the importance of computational methods to speed up the characterization of unknown genes. These studies have been improved by the use of three dimensional information from the predicted proteins generated by molecular modeling techniques. In this work, we disclose the structure-function relationship of a gene product from Leishmania amazonensis by applying molecular modeling and bioinformatics techniques. The analyzed sequence encodes a 159 aminoacids polypeptide (estimated 18 kDa) and was denoted LaPABP for its high homology with poly-A binding proteins from trypanosomatids. The domain structure, clustering analysis and a three dimensional model of LaPABP, basically obtained by homology modeling on the structure of the human poly-A binding protein, are described. Based on the analysis of the electrostatic potential mapped on the model's surface and conservation of intramolecular contacts responsible for folding stabilization we hypothesize that this protein may have less avidity to RNA than it's L. major counterpart but still account for a significant functional activity in the parasite. The model obtained will help in the design of mutagenesis experiments aimed to elucidate the mechanism of gene expression in trypanosomatids and serve as a starting point for its exploration as a potential source of targets for a rational chemotherapy.