999 resultados para Panama canal - History


Relevância:

20.00% 20.00%

Publicador:

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Examination of the lateral line canals in the Epaulette Shark reveals a much more differentiated sensory system than previously reported from any elasmobranch. Two main types of lateral line canals are found. In one type rounded patches of sensory epithelia are separated by elevations of the canal floor. The other type is a straight canal without restrictions and with an almost continuous sensory epithelium. In addition, we found epithelia (type A) with very long apical microvilli on the supporting cells. These microvilli reach beyond the stereovilli of the hair cells. Another type (B) of sensory epithelium has short microvilli on the supporting cells. In this latter type of epithelium the stereovilli of the hair cells are comparatively tall and reach out beyond the supporting cell microvilli. New hair cells are found widely in both types of sensory epithelia. These always occur as single cells, unlike those described in teleost lateral line canal sensory epithelia where new hair cells seem to form in pairs. Dying hair cells are also widespread, indicating a continuous turnover of hair cells.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

What causes species richness to vary among different groups of organisms? Two hypotheses are that large geographical ranges and fast life history either reduce extinction rates or raise speciation rates, elevating a clade's rate of diversification. Here we present a comparative analysis of these hypotheses using data on the phylogenetic relationships, geographical ranges and life history of the terrestrial mammal fauna of Australia. By comparing species richness patterns to null models, we show that species are distributed nonrandomly among genera. Using sister-clade comparisons to control for clade age, we then find that faster diversification is significantly associated with larger geographical ranges and larger litters, but there is no evidence for an effect of body size or age at first breeding on diversification rates. We believe the most likely explanation for these patterns is that larger litters and geographical ranges increase diversification rates because they buffer species from extinction. We also discuss the possibility that positive effects of litter size and range size on diversification rates result from elevated speciation rates.