973 resultados para Pairing symmetry
Resumo:
We study the effects of management of the PT-symmetric part of the potential within the setting of Schrodinger dimer and trimer oligomer systems. This is done by rapidly modulating in time the gain/loss profile. This gives rise to a number of interesting properties of the system, which are explored at the level of an averaged equation approach. Remarkably, this rapid modulation provides for a controllable expansion of the region of exact PT-symmetry, depending on the strength and frequency of the imposed modulation. The resulting averaged models are analysed theoretically and their exact stationary solutions are translated into time-periodic solutions through the averaging reduction. These are, in turn, compared with the exact periodic solutions of the full non-autonomous PT-symmetry managed problem and very good agreement is found between the two.
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Phase transitions involving spontaneous time-reversal symmetry breaking are studied on the honeycomb lattice at finite hole doping with next-nearest-neighbor repulsion. We derive an exact expression for the mean-field equation of state in closed form, valid at temperatures much less than the Fermi energy. Contrary to standard expectations, we find that thermally induced intraband particle-hole excitations can create and stabilize a uniform metallic phase with broken time-reversal symmetry as the temperature is raised in a region where the ground state is a trivial metal.
Resumo:
The increasing number of space debris in operating regions around the earth constitutes a real threat to space missions. The goal of the research is to establish appropriate scientific-technological conditions to prevent the destruction and/or impracticability of spacecraft in imminent collision in these regions. A definitive solution to this problem has not yet been reached with the degree of precision that the dynamics of spatial objects (vehicle and debris) requires mainly due to the fact that collisions occur in chains and fragmentation of these objects in the space environment. This fact threatens the space missions on time and with no prospects for a solution in the near future. We present an optimization process in finding the initial conditions (CIC) to collisions, considering the symmetry of the distributions of maximum relative positions between spatial objects with respect to the spherical angles. For this, we used the equations of the dynamics on the Clohessy-Witshire, representing a limit of validation that is highly computationally costly. We simulate different maximum relative positions values of the corresponding initial conditions given in terms of spherical angles. Our results showed that there are symmetries that significantly reduce operating costs, such that the search of the CIC is advantageously carried out up to 4 times the initial processing routine. Knowledge of CIC allows the propulsion system operating vehicle implement evasive maneuvers before impending collisions with space debris.
Resumo:
The momentum dependence of the ρ0-ω mixing contribution to charge-symmetry breaking (CSB) in the nucleon-nucleon interaction is compared in a variety of models. We focus in particular on the role that the structure of the quark propagator plays in the predicted behaviour of the ρ0-ω mixing amplitude. We present new results for a confining (entire) quark propagator and for typical propagators arising from explicit numerical solutions of quark Dyson-Schwinger equations We compare these to hadronic and free quark calculations The implications for our current understanding of CSB experiments is discussed.
Resumo:
The present experiment investigated whether pigeons can show associative symmetry on a two-alternative matching to-sample procedure The procedure consisted of a within subject sequence of training and testing with reinforcement and It provided (a) exemplars of symmetrical responding and (b) all prerequisite discriminations among test samples and comparisons After pigeons had learned two arbitrary matching tasks (A B and C D) they were given a reinforced symmetry test for half of the baseline relations (B1-A1 and D1-C1) To control for the effects of reinforcement during testing two novel nonsymmetrical responses were concurrently reinforced using the other baseline stimuli (D2-A2 and B2-C2) Pigeons matched at chance on both types of relations thus indicating no evidence for symmetry These symmetrical and nonsymmetrical relations were then directly trained in order to provide exemplars of symmetry and all prerequisite discriminations for a second test The symmetrical test relations were now B2-A2 and D2-C2 and the nonsymmetrical relations were D1-A1 and B1-C1 On this test 1 pigeon showed clear evidence of symmetry 2 pigeons showed weak evidence and 1 pigeon showed no evidence The previous training of all prerequisite discriminations among stimuli and the within subject control for testing with reinforcement seem to have set favorable conditions for the emergence of symmetry in nonhumans However the variability across subjects shows that methodological variables still remain to be controlled
Resumo:
The species-specificity of pairing has been studied in three sympatric Neotropical termites: Cornitermes bequaerti, Cornitermes cumulans and Cornitermes silvestrii (Termitidae, Syntermitinae). Bioassays showed that sex attraction was highly species-specific between C. bequaerti and C cumulans but not between C. cumulans and C. silvestrii. The sex-pairing pheromone of the three species is secreted by the tergal glands of female alates. It consists of a common compound (3Z,6Z,8E)-dodeca-3,6,8-trien-1-ol. In C. bequaerti, this polyunsaturated alcohol is the only compound of the sex-pairing pheromone, whereas it is associated with the oxygenated sesquiterpene (E)-nerolidol in C. cumulans, and with (E)-nerolidol and (Z)-dodec-3-en-1-ol in C silvestrii. (3Z,6Z,8E)-Dodeca-3,6,8-trien-1-ol is responsible for sexual attraction, whereas (E)-nerolidol, which is inactive in eliciting attraction of male alates, is responsible for the species-specificity of the attraction. This is the first time that a multicomponent sex-pairing pheromone has been identified in termites. The role of (Z)-dodec-3-en-1-ol present on the surface of the tergal glands of the female alates of C. silvestrii could not be definitively determined, but it is suggested that this compound could be involved in the species-specificity of sex attraction with other sympatric species of Cornitermes. Our study shows that the reproductive isolation in termites is due to a succession of factors, as the chronology of dispersal flights, the species-specificity of sex-pairing pheromones and the species-specific recognition. (C) 2011 Elsevier Ltd. All rights reserved.
Resumo:
PURPOSE: To investigate the facial symmetry of high and low dose methotrexate (MTX) treated rats submitted to experimentally displaced mandibular condyle fracture through the recording of cephalometric measurements. METHODS: One hundred male Wistar rats underwent surgery using an experimental model of right condylar fracture. Animals were divided into four groups: A - saline solution (1mL/week); B - dexamethasone (DEX) (0,15mg/Kg); C - MTX low dose (3 mg/Kg/week); D - MTX high dose (30 mg/Kg). Animals were sacrificed at 1, 7, 15, 30 and 90 days postoperatively (n=5). Body weight was recorded. Specimens were submitted to axial radiographic incidence, and cephalometric mensurations were made using a computer system. Linear measurements of skull and mandible, as well as angular measurements of mandibular deviation were taken. Data were subjected to statistical analyses among the groups, periods of sacrifice and between the sides in each group (alpha=0.05). RESULTS: Animals regained body weight over time, except in group D. There was reduction in the mandibular length and also changes in the maxilla as well as progressive deviation in the mandible in relation to the skull basis in group D. CONCLUSION: Treatment with high dose methotrexate had deleterious effect on facial symmetry of rats submitted to experimentally displaced condylar process fracture.
Resumo:
We present a family of networks whose local interconnection topologies are generated by the root vectors of a semi-simple complex Lie algebra. Cartan classification theorem of those algebras ensures those families of interconnection topologies to be exhaustive. The global arrangement of the network is defined in terms of integer or half-integer weight lattices. The mesh or torus topologies that network millions of processing cores, such as those in the IBM BlueGene series, are the simplest member of that category. The symmetries of the root systems of an algebra, manifested by their Weyl group, lends great convenience for the design and analysis of hardware architecture, algorithms and programs.
Resumo:
By computing the two-loop effective potential of the D=3 N=1 supersymmetric Chern-Simons model minimally coupled to a massless self-interacting matter superfield, it is shown that supersymmetry is preserved, while the internal U(1) and the scale symmetries are broken at two-loop order, dynamically generating masses both for the gauge superfield and for the real component of the matter superfield.
Resumo:
Understanding how magnetic materials respond to rapidly varying magnetic fields, as in dynamic hysteresis loops, constitutes a complex and physically interesting problem. But in order to accomplish a thorough investigation, one must necessarily consider the effects of thermal fluctuations. Albeit being present in all real systems, these are seldom included in numerical studies. The notable exceptions are the Ising systems, which have been extensively studied in the past, but describe only one of the many mechanisms of magnetization reversal known to occur. In this paper we employ the Stochastic Landau-Lifshitz formalism to study high-frequency hysteresis loops of single-domain particles with uniaxial anisotropy at an arbitrary temperature. We show that in certain conditions the magnetic response may become predominantly out-of-phase and the loops may undergo a dynamic symmetry loss. This is found to be a direct consequence of the competing responses due to the thermal fluctuations and the gyroscopic motion of the magnetization. We have also found the magnetic behavior to be exceedingly sensitive to temperature variations, not only within the superparamagnetic-ferromagnetic transition range usually considered, but specially at even lower temperatures, where the bulk of interesting phenomena is seen to take place. (C) 2011 Elsevier B.V. All rights reserved.