676 resultados para PURINE NUCLEOSIDE PHOSPHORYLASE
Resumo:
Uncoupling proteins (UCPs) are membrane proteins that mediate purine nucleotide-sensitive free fatty acid-activated H(+) flux through the inner mitochondrial membrane. After the discovery of UCP in higher plants in 1995, it was acknowledged that these proteins are widely distributed in eukaryotic organisms. The widespread presence of UCPs in eukaryotes implies that these proteins may have functions other than thermogenesis. In this review, we describe the current knowledge of plant UCPs, including their discovery, biochemical properties, distribution, gene family, gene expression profiles, regulation of gene expression, and evolutionary aspects. Expression analyses and functional studies on the plant UCPs under normal and stressful conditions suggest that UCPs regulate energy metabolism in the cellular responses to stress through regulation of the electrochemical proton potential (Delta mu(H)+) and production of reactive oxygen species.
Resumo:
In this study, point mutations were introduced in plant uncoupling mitochondrial protein AtUCP1, a typical member of the plant uncoupling protein (UCP) gene subfamily, in amino acid residues Lys147, Arg155 and Tyr269, located inside the so-called UCP-signatures, and in two more residues, Cys28 and His83, specific for plant UCPs. The effects of amino acid replacements on AtUCP1 biochemical properties were examined using reconstituted proteoliposomes. Residue Arg155 appears to be crucial for AtUCP1 affinity to linoleic acid (LA) whereas His83 plays an important role in AtUCP1 transport activity. Residues Cys28, Lys147, and also Tyr269 are probably essential for correct protein function, as their substitutions affected either the AtUCP1 affinity to LA and its transport activity, or sensitivity to inhibitors (purine nucleotides). Interestingly, Cys28 substitution reduced ATP inhibitory effect on AtUCP1, while Tyr269Phe mutant exhibited 2.8-fold increase in sensitivity to ATP, in accordance with the reverse mutation Phe267Tyr of mammalian UCP1. (C) 2007 Elsevier B.V. All fights reserved.
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
The parasite Schistosoma mansoni lacks the de novo pathway for purine biosynthesis and depends on salvage pathways for its purine requirements. Schistosomiasis is endemic in 76 countries and territories and amongst the parasitic diseases ranks second after malaria in terms of social and economic impact and public health importance. The PNP is an attractive target for drug design and it has been submitted to extensive structure-based design. The atomic coordinates of the complex of human PNP with inosine were used as template for starting the modeling of PNP from S. mansoni complexed with inosine. Here we describe the model for the complex SmPNP-inosine and correlate the structure with differences in the affinity for inosine presented by human and S. mansoni PNPs. (C) 2004 Elsevier B.V. All rights reserved.
Resumo:
Oxygen-binding properties, blood gases, and acid-base parameters were studied in tegu lizards, Tupinambis merianae, at different seasons and temperatures. Independent of temperature and pH, blood oxygen affinity was higher in dormant lizards than in those active during the summer. Haematocrit (Hct) and hemoglobin content ([Hb]) were greater in active lizards resulting in a higher oxygen-carrying capacity. Nucleoside triphosphate content ([NTP]) was reduced during dormancy, but the ratio between [NTP] and [Hb] remained unchanged. Dormancy was accompanied by an increase in plasma bicarbonate ([HCO(3)(-)]PI) and an elevation of arterial CO(2) partial pressure (P(aCO2)) and CO(2) content in the plasma (C(PlCO2)). These changes in acid-base parameters persist over a broad range of body temperatures. In vivo, arterial O(2) partial pressure (Pa(O2)) and O(2) content (Ca(O2)) were not affected by season and tended to increase with temperature. Arterial pH (pH(a)) of dormant animals is reduced compared to active lizards at body temperatures below 15 degreesC, while no significant difference was noticed at higher temperatures. (C) 2003 Elsevier B.V. All rights reserved.
Resumo:
The X-ray crystal structure of a complex between ribonuclease T-1 and guanylyl(3'-6')-6'-deoxyhomouridine (GpcU) has been determined at 2.0 Angstrom resolution. This Ligand is an isosteric analogue of the minimal RNA substrate, guanylyl(3'-5')uridine (GpU), where a methylene is substituted for the uridine 5'-oxygen atom. Two protein molecules are part of the asymmetric unit and both have a GpcU bound at the active site in the same manner. The protein-protein interface reveals an extended aromatic stack involving both guanines and three enzyme phenolic groups. A third GpcU has its guanine moiety stacked on His92 at the active site on enzyme molecule A and interacts with GpcU on molecule B in a neighboring unit via hydrogen bonding between uridine ribose 2'- and 3'-OH groups. None of the uridine moieties of the three GpcU molecules in the asymmetric unit interacts directly with the protein. GpcU-active-site interactions involve extensive hydrogen bonding of the guanine moiety at the primary recognition site and of the guanosine 2'-hydroxyl group with His40 and Glu58. on the other hand, the phosphonate group is weakly bound only by a single hydrogen bond with Tyr38, unlike ligand phosphate groups of other substrate analogues and 3'-GMP, which hydrogen-bonded with three additional active-site residues. Hydrogen bonding of the guanylyl 2'-OH group and the phosphonate moiety is essentially the same as that recently observed for a novel structure of a RNase T-1-3'-GMP complex obtained immediately after in situ hydrolysis of exo-(S-p)-guanosine 2',3'-cyclophosphorothioate [Zegers et al. (1998) Nature Struct. Biol. 5, 280-283]. It is likely that GpcU at the active site represents a nonproductive binding mode for GpU [:Steyaert, J., and Engleborghs (1995) fur. J. Biochem. 233, 140-144]. The results suggest that the active site of ribonuclease T-1 is adapted for optimal tight binding of both the guanylyl 2'-OH and phosphate groups (of GpU) only in the transition state for catalytic transesterification, which is stabilized by adjacent binding of the leaving nucleoside (U) group.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
O objetivo deste trabalho foi estudar alguns aspectos da fisiologia pós-colheita de inflorescências de sorvetão cultivadas no Submédio São Francisco. Hastes florais recém-colhidas foram submetidas a diferentes tratamentos (água destilada; 75mg L-1 de nitrato de prata - AgNO3; 1000mg L-1 de cloreto de cobalto - CoCl2; 5mg L-1 de ácido giberélico - GA3 - Progibb® e 10mg L-1 de 6-Benzilaminopurina - BAP), em ambiente com temperatura e umidade controlada por 15 dias. A vida pós-colheita foi acompanhada a partir da escala de notas, da massa da matéria fresca e do consumo da solução conservante. O tratamento com AgNO3 em hastes de sorvetão, foi o mais eficiente na manutenção da vida de vaso de sorvetão, porém, devido a sua toxidez, recomenda-se o uso de GA3.
Resumo:
No presente protocolo experimental, determinaram-se os proteinogramas séricos, por intermédio da eletroforese em gel de poliacrilamida contendo duodecil sulfato de sódio (SDS-PAGE), de 120 cães com raças e idades variadas e atendidos junto ao Hospital Veterinário Governador Laudo Natel da FCAV/Unesp, com o objetivo principal de comparar diferentes frações seroproteicas em estados anêmicos regenerativos, arregenerativos, imunomediados primários e secundários. Os referidos animais foram distribuídos em cinco grupos experimentais: grupo 1: 20 cães de controle; grupo 2: 28 cães com anemia regenerativa não imune; grupo 3: 27 cães com anemia arregenerativa não imune; grupo 4: 10 cães com anemia hemolítica imunomediada primária; grupo 5: 35 cães com anemia hemolítica imunomediada secundária. A técnica SDS-PAGE permitiu o fracionamento de 24 proteínas, cujos pesos moleculares (PM) variaram de 18.000 a 165.000 daltons (Da). Os cães com AHIM primária e secundária apresentaram 24 frações proteicas em seus traçados eletroforéticos, enquanto que cães de controle (1) e portadores de anemia regenerativa (2) e arregenerativa (3) de natureza não imune apresentaram 23 frações de proteínas, cuja proteína de peso molecular 68.000Da não foi encontrada. Dessa forma, 23 frações proteicas foram detectadas e revelaram-se comuns aos proteinogramas dos cães de controle e daqueles dos quatro grupos experimentais. Destas, identificaram-se nominalmente 11 frações proteicas, e as demais foram estudadas com base nos seus respectivos pesos moleculares. em relação aos cães de controle, os anêmicos (grupos 2, 3, 4 e 5) apresentaram maiores concentrações de transferrina sérica e entre estes os animais portadores da AHIM primária. Todos os cães anêmicos apresentaram teores séricos de haptoglobina e fosforilase significativamente maiores que os controles, enquanto que a concentração sérica de ceruloplasmina foi significativamente maior nestes. Tais achados analisados em conjunto agregam informações adicionais úteis à elucidação das AHIMs em cães.
Resumo:
Tuberculosis (TB) remains the leading cause of mortality due to a bacterial pathogen, Mycobacterium tuberculosis. However, no new classes of drugs for TB have been developed in the past 30 years. Therefore there is an urgent need to develop faster acting and effective new antitubercular agents, preferably belonging to new structural classes, to better combat TB, including MDR-TB, to shorten the duration of current treatment to improve patient compliance, and to provide effective treatment of latent tuberculosis infection. The enzymes in the shikimate pathway are potential targets for development of a new generation of antitubercular drugs. The shikimate pathway has been shown by disruption of aroK gene to be essential for the Mycobacterium tuberculosis. The shikimate kinase (SK) catalyses the phosphorylation of the 3-hydroxyl group of shikimic acid (shikimate) using ATP as a co-substrate. SK belongs to family of nucleoside monophosphate (NMP) kinases. The enzyme is an alpha/beta protein consisting of a central sheet of five parallel beta-strands flanked by alpha-helices. The shikimate kinases are composed of three domains: Core domain, Lid domain and Shikimate-binding domain. The Lid and Shikimate-binding domains are responsible for large conformational changes during catalysis. More recently, the precise interactions between SK and substrate have been elucidated, showing the binding of shikimate with three charged residues conserved among the SK sequences. The elucidation of interactions between MtSK and their substrates is crucial for the development of a new generation of drugs against tuberculosis through rational drug design.
Resumo:
The 3-isobutyl-1-methylxanthine (IBMX) is able to prevent resumption of meiosis by maintaining elevated cyclic AMP (cAMP) concentrations in the oocyte, and roscovitine, a purine known to specifically inhibit MPF kinase activity, maintains bovine oocytes at the germinal vesicle (GV) stage. The present study was conducted to analyze whether cytoplasmic maturation (examined by the pattern of cortical granule (CG) distribution) of bovine oocytes is improved during meiotic arrest with IBMX and roscovitine. Oocytes were matured in vitro in a 10% Knockout(SR) supplemented TCM-199 medium (Control) with either 0.5 mM IBMX or 25 mu M roscovitine (ROSC). Oocytes were stained with fluorescein isothiocyanate conjugated Lens culinaris agglutinin (FITC-LCA) for CG evaluation and with Hoechst 33342 for nuclear stage assessment. At 16 h of culture, the percentage of oocytes remaining in the GV stage was higher (P < 0.05) in the ROSC group (32.41%) compared with the Control and IBMX groups (8.61% and 9.73%, respectively). At 24h of culture, progression of meiosis to M II stage was retarded (P < 0.05) in the ROSC group (24.05%) compared to the Control (60.20%), whereas the IBMX group (33.88%) showed no significant difference to the other two groups. At 16h of maturation, the proportion of oocytes with CG in clusters (immature cytoplasm) was similar between the groups, as was the percentage of peripheral CG (mature) at 24h of maturation. The results of the present study demonstrated that the meiotic inhibitors IBMX and roscovitine delay the progression of nuclear maturation without affecting cytoplasmic maturation, assessed by the analysis of CG repositioning. (c) 2006 Elsevier B.V. All rights reserved.
Resumo:
S. aureofaciens growth in a chemically defined medium was associated with the active secretion of nucleic acid-related substances in the medium. High secretion depended on low availability of phosphate, and fractionation showed 7 anionic substances were secreted as major components. When compared to 76 known purine and pyrimidine derivatives only erotic acid was identified. Cationic components are among the minor concentration components secreted which have been identified as cytosine, inosine, cytidine, adenine, guanine and, probably, 1-methyl-adenine.
Resumo:
Angelonia salicariifolia is an herbaceous perennial native to Brazil with ornamental potential as garden plant, cut-flower and potted plant. It has blue flowers 1.0 to 1.4 cm long, in 10-30 cm long terminal racemes. In previous studies seeds of A. salicariifolia showed a positive photoblastic behavior under constant temperatures of 10, 15, 20, 25, 30 and 35 degrees C. The present study evaluated the effects of growth regulators (100, 200, 300, 400, 500 mg L-1 of gibberellic acid and 2.25, 11.3, 22.5 mg L-1 of 6-benzylamino-purine) and potassium nitrate (0.2 and 1.0 %) on promoting its seed germination. The experiment was conducted in a completely randomized design with six replications of 25 seeds, for each treatment. Seeds from dehiscent capsules were sown on one layer of filter paper and moistened with growth regulators or KNO3 solutions. Germination was carried out at 25 degrees C +/- 1 degrees C, under continuous light or darkness. Germination (protusion of the radicle) was observed daily for 20 days. In the dark, only gibberellic acid promoted seed germination. The percentage of germination and the speed of germination index at 400 mg L-1 (47.3%; 0.86) and 500 mg L-1 (52.0%; 0.95) were significantly higher compared to 100 mg L-1 (27.8%; 0.38) and 200 mg L-1 (32.3%; 0.49). The mean germination time at 500 mg L-1 (10.0 days) was significantly smaller compared to 100 mg L-1 (11.9 days) and 200 mg L-1 (11.5 days). Under light, treatments did not differ among each other or from the control, except for 22.5 mg L-1 of 6-benzylamino-purine and potassium nitrate (1.0%), which decreased the percentage of germination and the speed of germination index compared to control. The application of growth regulators or potassium nitrate under light condition is not necessary, since these treatments did not improve germination percentage or the speed of germination index.
Resumo:
The role of superoxide in adriamycin-induced nephropathy (single dose; i.v. 3 mg/kg) has been studied by blocking superoxide synthesis through the administration of allopurinol (500 mg/L in drinking water). In Experiment I (EI), allopurinol administration was started 3 days prior to nephropathy induction and continued until day 14. In Experiment II (EII) allopurinol administration was started 2 weeks after nephropathy induction and was maintained until the end of the experiment (26 weeks). Affected glomeruli frequency and tubulointerstitial lesion index (TILI) were determined at Weeks 2 and 4 (EI) and Week 26 (EII). In EI, and 24 h mean proteinuria in the nephrotic control group (NCG-I) differed from that of the treated nephrotic group (TNG-I) at Week 1 (TNG = 33.3 ± 6.39 mg/24 h; NCG = 59.8 ± 6.3 mg/24 h; p < 0.05) and 2 (NCG-I = 80.0 ± 17.5 mg/24h; TNG-I = 49.1 ± 8.4 mg/24 h; p < 0.05). No glomerular alterations were observed and TILI medians were not different in both nephrotic groups at week 2 (NCG-I = 1+: TNG = 1+) and 4 (NCG = 4+; TNG = 4+). In EII, NCG-II and TNG-II presented different 24 h proteinuria values only at Week 6, (136.91 ± 22.23 mg/24 h ad 72.66 ± 10.72 mg/24 h, respectively; p < 0.05). Between nephrotic groups, there was no statistical difference in the median of affected glomeruli (CNG-II = 56%; TNG-II = 48% and TILI (NCG-II = 8+; TNG-II = 9+). Thus, allopurinol was associated with a transient reduction in proteinuria and it did not alter the progression of the nephropathy.