923 resultados para PLANE-STRAIN COMPRESSION


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Adiabatic compression testing of components in gaseous oxygen is a test method that is utilized worldwide and is commonly required to qualify a component for ignition tolerance under its intended service. This testing is required by many industry standards organizations and government agencies. This paper traces the background of adiabatic compression testing in the oxygen community and discusses the thermodynamic and fluid dynamic processes that occur during rapid pressure surges. This paper is the first of several papers by the authors on the subject of adiabatic compression testing and is presented as a non-comprehensive background and introduction.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Adiabatic compression testing of components in gaseous oxygen is a test method that is utilized worldwide and is commonly required to qualify a component for ignition tolerance under its intended service. This testing is required by many industry standards organizations and government agencies; however, a thorough evaluation of the test parameters and test system influences on the thermal energy produced during the test has not yet been performed. This paper presents a background for adiabatic compression testing and discusses an approach to estimating potential differences in the thermal profiles produced by different test laboratories. A “Thermal Profile Test Fixture” (TPTF) is described that is capable of measuring and characterizing the thermal energy for a typical pressure shock by any test system. The test systems at Wendell Hull & Associates, Inc. (WHA) in the USA and at the BAM Federal Institute for Materials Research and Testing in Germany are compared in this manner and some of the data obtained is presented. The paper also introduces a new way of comparing the test method to idealized processes to perform system-by-system comparisons. Thus, the paper introduces an “Idealized Severity Index” (ISI) of the thermal energy to characterize a rapid pressure surge. From the TPTF data a “Test Severity Index” (TSI) can also be calculated so that the thermal energies developed by different test systems can be compared to each other and to the ISI for the equivalent isentropic process. Finally, a “Service Severity Index” (SSI) is introduced to characterizing the thermal energy of actual service conditions. This paper is the second in a series of publications planned on the subject of adiabatic compression testing.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Background: Altered mechanical properties of the heel pad have been implicated in the development of plantar heel pain. However, the in vivo properties of the heel pad during gait remain largely unexplored in this cohort. The aim of the current study was to characterise the bulk compressive properties of the heel pad in individuals with and without plantar heel pain while walking. ---------- Methods: The sagittal thickness and axial compressive strain of the heel pad were estimated in vivo from dynamic lateral foot radiographs acquired from nine subjects with unilateral plantar heel pain and an equivalent number of matched controls, while walking at their preferred speed. Compressive stress was derived from simultaneously acquired plantar pressure data. Principal viscoelastic parameters of the heel pad, including peak strain, secant modulus and energy dissipation (hysteresis), were estimated from subsequent stress–strain curves.---------- Findings: There was no significant difference in loaded and unloaded heel pad thickness, peak stress, peak strain, or secant and tangent modulus in subjects with and without heel pain. However, the fat pad of symptomatic feet had a significantly lower energy dissipation ratio (0.55 ± 0.17 vs. 0.69 ± 0.08) when compared to asymptomatic feet (P < .05).---------- Interpretation: Plantar heel pain is characterised by reduced energy dissipation ratio of the heel pad when measured in vivo and under physiologically relevant strain rates.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Analytical and computational models of the intervertebral disc (IVD) are commonly employed to enhance understanding of the biomechanics of the human spine and spinal motion segments. The accuracy of these models in predicting physiological behaviour of the spine is intrinsically reliant on the accuracy of the material constitutive representations employed to represent the spinal tissues. There is a paucity of detailed mechanical data describing the material response of the reinforced­ground matrix in the anulus fibrosus of the IVD. In the present study, the ‘reinforced­ground matrix’ was defined as the matrix with the collagen fibres embedded but not actively bearing axial load, thus incorporating the contribution of the fibre-fibre and fibre-matrix interactions. To determine mechanical parameters for the anulus ground matrix, mechanical tests were carried out on specimens of ovine anulus, under unconfined uniaxial compression, simple shear and biaxial compression. Test specimens of ovine anulus fibrosus were obtained with an adjacent layer of vertebral bone/cartilage on the superior and inferior specimen surface. Specimen geometry was such that there were no continuous collagen fibres coupling the two endplates. Samples were subdivided according to disc region - anterior, lateral and posterior - to determine the regional inhomogeneity in the anulus mechanical response. Specimens were loaded at a strain rate sufficient to avoid fluid outflow from the tissue and typical stress-strain responses under the initial load application and under repeated loading were determined for each of the three loading types. The response of the anulus tissue to the initial and repeated load cycles was significantly different for all load types, except biaxial compression in the anterior anulus. Since the maximum applied strain exceeded the damage strain for the tissue, experimental results for repeated loading reflected the mechanical ability of the tissue to carry load, subsequent to the initiation of damage. To our knowledge, this is the first study to provide experimental data describing the response of the ‘reinforced­ground matrix’ to biaxial compression. Additionally, it is novel in defining a study objective to determine the regionally inhomogeneous response of the ‘reinforced­ground matrix’ under an extensive range of loading conditions suitable for mechanical characterisation of the tissue. The results presented facilitate the development of more detailed and comprehensive constitutive descriptions for the large strain nonlinear elastic or hyperelastic response of the anulus ground matrix.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This paper presents an overview of our demonstration of a low-bandwidth, wireless camera network where image compression is undertaken at each node. We briefly introduce the Fleck hardware platform we have developed as well as describe the image compression algorithm which runs on individual nodes. The demo will show real-time image data coming back to base as individual camera nodes are added to the network. Copyright 2007 ACM.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

One of the primary treatment goals of adolescent idiopathic scoliosis (AIS) surgery is to achieve maximum coronal plane correction while maintaining coronal balance. However maintaining or restoring sagittal plane spinal curvature has become increasingly important in maintaining the long-term health of the spine. Patients with AIS are characterised by pre-operative thoracic hypokyphosis, and it is generally agreed that operative treatment of thoracic idiopathic scoliosis should aim to restore thoracic kyphosis to normal values while maintaining lumbar lordosis and good overall sagittal balance. The aim of this study was to evaluate CT sagittal plane parameters, with particular emphasis on thoracolumbar junctional alignment, in patients with AIS who underwent Video Assisted Thoracoscopic Spinal Fusion and Instrumentation (VATS). This study concluded that video-assisted thoracoscopic spinal fusion and instrumentation reliably increases thoracic kyphosis while preserving junctional alignment and lumbar lordosis in thoracic AIS.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Magnetic Resonance Imaging (MRI) offers a valuable research tool for the assessment of 3D spinal deformity in AIS, however the horizontal patient position imposed by conventional scanners removes the axial compressive loading on the spine which is an important determinant of deformity shape and magnitude in standing scoliosis patients. The objective of this study was to design, construct and test an MRI compatible compression device for research into the effect of axial loading on spinal deformity using supine MRI scans. The compression device was designed and constructed, consisting of a vest worn by the patient, which was attached via straps to a pneumatically actuated footplate. An applied load of 0.5 x bodyweight was remotely controlled by a unit in the scanner operator’s console. The entire device was constructed using non-metallic components for MRI compatibility. The device was evaluated by performing unloaded and loaded supine MRI scans on a series of 10 AIS patients. The study concluded that an MRI compatible compression device had been successfully designed and constructed, providing a research tool for studies into the effect of axial loading on 3D spinal deformity in scoliosis. The 3D axially loaded MR imaging capability developed in this study will allow future research investigations of the effect of axial loading on spinal rotation, and for imaging the response of scoliotic spinal tissues to axial loading.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Cold-formed steel members are extensively used in the building construction industry, especially in residential, commercial and industrial buildings. In recent times, fire safety has become important in structural design due to increased fire damage to properties and loss of lives. However, past research into the fire performance of cold-formed steel members has been limited, and was confined to compression members. Therefore a research project was undertaken to investigate the structural behaviour of compact cold-formed steel lipped channel beams subject to inelastic local buckling and yielding, and lateral-torsional buckling effects under simulated fire conditions and associated section and member moment capacities. In the first phase of this research, an experimental study based on tensile coupon tests was undertaken to obtain the mechanical properties of elastic modulus and yield strength and the stress-strain relationship of cold-formed steels at uniform ambient and elevated temperatures up to 700oC. The mechanical properties deteriorated with increasing temperature and are likely to reduce the strength of cold-formed beams under fire conditions. Predictive equations were developed for yield strength and elastic modulus reduction factors while a modification was proposed for the stressstrain model at elevated temperatures. These results were used in the numerical modelling phases investigating the section and member moment capacities. The second phase of this research involved the development and validation of two finite element models to simulate the behaviour of compact cold-formed steel lipped channel beams subject to local buckling and yielding, and lateral-torsional buckling effects. Both models were first validated for elastic buckling. Lateral-torsional buckling tests of compact lipped channel beams were conducted at ambient temperature in order to validate the finite element model in predicting the non-linear ultimate strength behaviour. The results from this experimental study did not agree well with those from the developed experimental finite element model due to some unavoidable problems with testing. However, it highlighted the importance of magnitude and direction of initial geometric imperfection as well as the failure direction, and thus led to further enhancement of the finite element model. The finite element model for lateral-torsional buckling was then validated using the available experimental and numerical ultimate moment capacity results from past research. The third phase based on the validated finite element models included detailed parametric studies of section and member moment capacities of compact lipped channel beams at ambient temperature, and provided the basis for similar studies at elevated temperatures. The results showed the existence of inelastic reserve capacity for compact cold-formed steel beams at ambient temperature. However, full plastic capacity was not achieved by the mono-symmetric cold-formed steel beams. Suitable recommendations were made in relation to the accuracy and suitability of current design rules for section moment capacity. Comparison of member capacity results from finite element analyses with current design rules showed that they do not give accurate predictions of lateral-torsional buckling capacities at ambient temperature and hence new design rules were developed. The fourth phase of this research investigated the section and member moment capacities of compact lipped channel beams at uniform elevated temperatures based on detailed parametric studies using the validated finite element models. The results showed the existence of inelastic reserve capacity at elevated temperatures. Suitable recommendations were made in relation to the accuracy and suitability of current design rules for section moment capacity in fire design codes, ambient temperature design codes as well as those proposed by other researchers. The results showed that lateral-torsional buckling capacities are dependent on the ratio of yield strength and elasticity modulus reduction factors and the level of non-linearity in the stress-strain curves at elevated temperatures in addition to the temperature. Current design rules do not include the effects of non-linear stress-strain relationship and therefore their predictions were found to be inaccurate. Therefore a new design rule that uses a nonlinearity factor, which is defined as the ratio of the limit of proportionality to the yield stress at a given temperature, was developed for cold-formed steel beams subject to lateral-torsional buckling at elevated temperatures. This thesis presents the details and results of the experimental and numerical studies conducted in this research including a comparison of results with predictions using available design rules. It also presents the recommendations made regarding the accuracy of current design rules as well as the new developed design rules for coldformed steel beams both at ambient and elevated temperatures.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The previous investigations have shown that the modal strain energy correlation method, MSEC, could successfully identify the damage of truss bridge structures. However, it has to incorporate the sensitivity matrix to estimate damage and is not reliable in certain damage detection cases. This paper presents an improved MSEC method where the prediction of modal strain energy change vector is differently obtained by running the eigensolutions on-line in optimisation iterations. The particular trail damage treatment group maximising the fitness function close to unity is identified as the detected damage location. This improvement is then compared with the original MSEC method along with other typical correlation-based methods on the finite element model of a simple truss bridge. The contributions to damage detection accuracy of each considered mode is also weighed and discussed. The iterative searching process is operated by using genetic algorithm. The results demonstrate that the improved MSEC method suffices the demand in detecting the damage of truss bridge structures, even when noised measurement is considered.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Chlamydia pneumoniae is a common human and animal pathogen associated with a wide range of upper and lower respiratory tract infections. In more recent years there has been increasing evidence to suggest a link between C. pneumoniae and chronic diseases in humans, including atherosclerosis, stroke and Alzheimer’s disease. C. pneumoniae human strains show little genetic variation, indicating that the human-derived strain originated from a common ancestor in the recent past. Despite extensive information on the genetics and morphology processes of the human strain, knowledge concerning many other hosts (including marsupials, amphibians, reptiles and equines) remains virtually unexplored. The koala (Phascolarctos cinereus) is a native Australian marsupial under threat due to habitat loss, predation and disease. Koalas are very susceptible to chlamydial infections, most commonly affecting the conjunctiva, urogenital tract and/or respiratory tract. To address this gap in the literature, the present study (i) provides a detailed description of the morphologic and genomic architecture of the C. pneumoniae koala (and human) strain, and shows that the koala strain is microscopically, developmentally and genetically distinct from the C. pneumoniae human strain, and (ii) examines the genetic relationship of geographically diverse C. pneumoniae isolates from human, marsupial, amphibian, reptilian and equine hosts, and identifies two distinct lineages that have arisen from animal-to-human cross species transmissions. Chapter One of this thesis explores the scientific problem and aims of this study, while Chapter Two provides a detailed literature review of the background in this field of work. Chapter Three, the first results chapter, describes the morphology and developmental stages of C. pneumoniae koala isolate LPCoLN, as revealed by fluorescence and transmission electron microscopy. The profile of this isolate, when cultured in HEp-2 human epithelial cells, was quite different to the human AR39 isolate. Koala LPCoLN inclusions were larger; the elementary bodies did not have the characteristic pear-shaped appearance, and the developmental cycle was completed within a shorter period of time (as confirmed by quantitative real-time PCR). These in vitro findings might reflect biological differences between koala LPCoLN and human AR39 in vivo. Chapter Four describes the complete genome sequence of the koala respiratory pathogen, C. pneumoniae LPCoLN. This is the first animal isolate of C. pneumoniae to be fully-sequenced. The genome sequence provides new insights into genomic ‘plasticity’ (organisation), evolution and biology of koala LPCoLN, relative to four complete C. pneumoniae human genomes (AR39, CWL029, J138 and TW183). Koala LPCoLN contains a plasmid that is not shared with any of the human isolates, there is evidence of gene loss in nucleotide salvage pathways, and there are 10 hot spot genomic regions of variation that were previously not identified in the C. pneumoniae human genomes. Sequence (partial-length) from a second, independent, wild koala isolate (EBB) at several gene loci confirmed that the koala LPCoLN isolate was representative of a koala C. pneumoniae strain. The combined sequence data provides evidence that the C. pneumoniae animal (koala LPCoLN) genome is ancestral to the C. pneumoniae human genomes and that human infections may have originated from zoonotic infections. Chapter Five examines key genome components of the five C. pneumoniae genomes in more detail. This analysis reveals genomic features that are shared by and/or contribute to the broad ecological adaptability and evolution of C. pneumoniae. This analysis resulted in the identification of 65 gene sequences for further analysis of intraspecific variation, and revealed some interesting differences, including fragmentation, truncation and gene decay (loss of redundant ancestral traits). This study provides valuable insights into metabolic diversity, adaptation and evolution of C. pneumoniae. Chapter Six utilises a subset of 23 target genes identified from the previous genomic comparisons and makes a significant contribution to our understanding of genetic variability among C. pneumoniae human (11) and animal (6 amphibian, 5 reptilian, 1 equine and 7 marsupial hosts) isolates. It has been shown that the animal isolates are genetically diverse, unlike the human isolates that are virtually clonal. More convincing evidence that C. pneumoniae originated in animals and recently (in the last few hundred thousand years) crossed host species to infect humans is provided in this study. It is proposed that two animal-to-human cross species events have occurred in the context of the results, one evident by the nearly clonal human genotype circulating in the world today, and the other by a more animal-like genotype apparent in Indigenous Australians. Taken together, these data indicate that the C. pneumoniae koala LPCoLN isolate has morphologic and genomic characteristics that are distinct from the human isolates. These differences may affect the survival and activity of the C. pneumoniae koala pathogen in its natural host, in vivo. This study, by utilising the genetic diversity of C. pneumoniae, identified new genetic markers for distinguishing human and animal isolates. However, not all C. pneumoniae isolates were genetically diverse; in fact, several isolates were highly conserved, if not identical in sequence (i.e. Australian marsupials) emphasising that at some stage in the evolution of this pathogen, there has been an adaptation/s to a particular host, providing some stability in the genome. The outcomes of this study by experimental and bioinformatic approaches have significantly enhanced our knowledge of the biology of this pathogen and will advance opportunities for the investigation of novel vaccine targets, antimicrobial therapy, or blocking of pathogenic pathways.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We present the design and deployment results for PosNet - a large-scale, long-duration sensor network that gathers summary position and status information from mobile nodes. The mobile nodes have a fixed-sized memory buffer to which position data is added at a constant rate, and from which data is downloaded at a non-constant rate. We have developed a novel algorithm that performs online summarization of position data within the buffer, where the algorithm naturally accommodates data input and output rate mismatch, and also provides a delay-tolerant approach to data transport. The algorithm has been extensively tested in a large-scale long-duration cattle monitoring and control application.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This paper presents a technique for tracking road edges in a panoramic image sequence. The major contribution is that instead of unwarping the image to find parallel lines representing the road edges, we choose to warp the parallel groundplane lines into the image plane of the equiangular panospheric camera. Updating the parameters of the line thus involves searching a very small number of pixels in the panoramic image, requiring considerably less computation than unwarping. Results using real-world images, including shadows, intersections and curves, are presented.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This paper presents the feasibility of using structural modal strain energy as a parameter employed in correlation- based damage detection method for truss bridge structures. It is an extension of the damage detection method adopting multiple damage location assurance criterion. In this paper, the sensitivity of modal strain energy to damage obtained from the analytical model is incorporated into the correlation objective function. Firstly, the sensitivity matrix of modal strain energy to damage is conducted offline, and for an arbitrary damage case, the correlation coefficient (objective function) is calculated by multiplying the sensitivity matrix and damage vector. Then, a genetic algorithm is used to iteratively search the damage vector maximising the correlation between the corresponding modal strain energy change (hypothesised) and its counterpart in measurement. The proposed method is simulated and compared with the conventional methods, e.g. frequency-error method, coordinate modal assurance criterion and multiple damage location assurance criterion using mode shapes on a numerical truss bridge structure. The result demonstrates the modal strain energy correlation method is able to yield acceptable damage detection outcomes with less computing efforts, even in a noise contaminated condition.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Axial loads of load bearing elements impact on the vibration characteristics. Several methods have been developed to quantify axial loads and hence axial deformations of individual structural members using their natural frequencies. Nevertheless, these methods cannot be applied to individual members in structural framing systems as the natural frequency is a global parameter for the entire framing system. This paper proposes an innovative method which uses modal strain energy phenomenon to quantify axial deformations of load bearing elements of structural framing systems. The procedure is illustrated through examples and results confirm that the proposed method has an ability to quantify the axial deformations of individual elements of structural framing systems