990 resultados para PHOSPHOLIPID TRANSFER PROTEIN


Relevância:

30.00% 30.00%

Publicador:

Resumo:

Wnt1 signaling has been implicated as one factor involved in neural crest-derived melanocyte (NC-M) development. Mice deficient for both Wnt1 and Wnt3a have a marked deficiency in trunk neural crest derivatives including NC-Ms. We have used cell lineage-directed gene targeting of Wnt signaling genes to examine the effects of Wnt signaling in mouse neural crest development. Gene expression was directed to cell lineages by infection with subgroup A avian leukosis virus vectors in lines of transgenic mice that express the retrovirus receptor tv-a. Transgenic mice with tva in either nestin-expressing neural precursor cells (line Ntva) or dopachrome tautomerase (DCT)-expressing melanoblasts (line DCTtva) were analyzed. We overstimulated Wnt signaling in two ways: directed gene transfer of Wnt1 to Ntva+ cells and transfer of β-catenin to DCTtva+ NC-M precursor cells. In both methods, NC-M expansion and differentiation were effected. Significant increases were observed in the number of NC-Ms [melanin+ and tyrosinase-related protein 1 (TYRP1)+ cells], the differentiation of melanin− TYRP1+ cells to melanin+ TYRP1+ NC-Ms, and the intensity of pigmentation per NC-M. These data are consistent with Wnt1 signaling being involved in both expansion and differentiation of migrating NC-Ms in the developing mouse embryo. The use of lineage-directed gene targeting will allow the dissection of signaling molecules involved in NC development and is adaptable to other mammalian developmental systems.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The γ-carboxyglutamic acid (Gla) domain of blood coagulation factors is responsible for Ca2+-dependent phospholipid membrane binding. Factor X-binding protein (X-bp), an anticoagulant protein from snake venom, specifically binds to the Gla domain of factor X. The crystal structure of X-bp in complex with the Gla domain peptide of factor X at 2.3-Å resolution showed that the anticoagulation is based on the fact that two patches of the Gla domain essential for membrane binding are buried in the complex formation. The Gla domain thus is expected to be a new target of anticoagulant drugs, and X-bp provides a basis for designing them. This structure also provides a membrane-bound model of factor X.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Most plants have the ability to respond to fluctuations in light to minimize damage to the photosynthetic apparatus. A proteolytic activity has been discovered that is involved in the degradation of the major light-harvesting chlorophyll a/b-binding protein of photosystem II (LHCII) when the antenna size of photosystem II is reduced upon acclimation of plants from low to high light intensities. This ATP-dependent proteolytic activity is of the serine or cysteine type and is associated with the outer membrane surface of the stroma-exposed thylakoid regions. The identity of the protease is not known, but it does not correspond to the recently identified chloroplast ATP-dependent proteases Clp and FtsH, which are homologs to bacterial enzymes. The acclimative response shows a delay of 2 d after transfer of the leaves to high light. This lag period was shown to be attributed to expression or activation of the responsible protease. Furthermore, the LHCII degradation was found to be regulated at the substrate level. The degradation process involves lateral migration of LHCII from the appressed to the nonappressed thylakoid regions, which is the location for the responsible protease. Phosphorylated LHCII was found to be a poor substrate for degradation in comparison with the unphosphorylated form of the protein. The relationship between LHCII degradation and other regulatory proteolytic processes in the thylakoid membrane, such as D1-protein degradation, is discussed.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Amyloplasts of starchy tissues such as those of maize (Zea mays L.) function in the synthesis and accumulation of starch during kernel development. ADP-glucose pyrophosphorylase (AGPase) is known to be located in chloroplasts, and for many years it was generally accepted that AGPase was also localized in amyloplasts of starchy tissues. Recent aqueous fractionation of young maize endosperm led to the conclusion that 95% of the cellular AGPase was extraplastidial, but immunolocalization studies at the electron- and light-microscopic levels supported the conclusion that maize endosperm AGPase was localized in the amyloplasts. We report the results of two nonaqueous procedures that provide evidence that in maize endosperms in the linear phase of starch accumulation, 90% or more of the cellular AGPase is extraplastidial. We also provide evidence that the brittle-1 protein (BT1), an adenylate translocator with a KTGGL motif common to the ADP-glucose-binding site of starch synthases and bacterial glycogen synthases, functions in the transfer of ADP-glucose into the amyloplast stroma. The importance of the BT1 translocator in starch accumulation in maize endosperms is demonstrated by the severely reduced starch content in bt1 mutant kernels.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Reduced (FeII) Rhodopseudomonas palustris cytochrome c′ (Cyt c′) is more stable toward unfolding ([GuHCl]1/2 = 2.9(1) M) than the oxidized (FeIII) protein ([GuHCl]1/2 = 1.9(1) M). The difference in folding free energies (ΔΔGf° = 70 meV) is less than half of the difference in reduction potentials of the folded protein (100 mV vs. NHE) and a free heme in aqueous solution (≈−150 mV). The spectroscopic features of unfolded FeII–Cyt c′ indicate a low-spin heme that is axially coordinated to methionine sulfur (Met-15 or Met-25). Time-resolved absorption measurements after CO photodissociation from unfolded FeII(CO)–Cyt c′ confirm that methionine can bind to the ferroheme on the microsecond time scale [kobs = 5(2) × 104 s−1]. Protein folding was initiated by photoreduction (two-photon laser excitation of NADH) of unfolded FeIII–Cyt c′ ([GuHCl] = 2.02–2.54 M). Folding kinetics monitored by heme absorption span a wide time range and are highly heterogeneous; there are fast-folding (≈103 s−1), intermediate-folding (102–101 s−1), and slow-folding (10−1 s−1) populations, with the last two likely containing methionine-ligated (Met-15 or Met-25) ferrohemes. Kinetics after photoreduction of unfolded FeIII–Cyt c′ in the presence of CO are attributable to CO binding [1.4(6) × 103 s−1] and FeII(CO)–Cyt c′ folding [2.8(9) s−1] processes; stopped-flow triggered folding of FeIII–Cyt c′ (which does not contain a protein-derived sixth ligand) is adequately described by a single kinetics phase with an estimated folding time constant of ≈4 ms [ΔGf° = −33(3) kJ mol−1] at zero denaturant.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Experimental studies of complete mammalian genes and other genetic domains are impeded by the difficulty of introducing large DNA molecules into cells in culture. Previously we have shown that GST–Z2, a protein that contains three zinc fingers and a proline-rich multimerization domain from the polydactyl zinc finger protein RIP60 fused to glutathione S-transferase (GST), mediates DNA binding and looping in vitro. Atomic force microscopy showed that GST–Z2 is able to condense 130–150 kb bacterial artificial chromosomes (BACs) into protein–DNA complexes containing multiple DNA loops. Condensation of the DNA loops onto the Z2 protein–BAC DNA core complexes with cationic lipid resulted in particles that were readily transferred into multiple cell types in culture. Transfer of total genomic linear DNA containing amplified DHFR genes into DHFR– cells by GST–Z2 resulted in a 10-fold higher transformation rate than calcium phosphate co-precipitation. Chinese hamster ovarian cells transfected with a BAC containing the human TP53 gene locus expressed p53, showing native promoter elements are active after GST–Z2-mediated gene transfer. Because DNA condensation by GST–Z2 does not require the introduction of specific recognition sequences into the DNA substrate, condensation by the Z2 domain of RIP60 may be used in conjunction with a variety of other agents to provide a flexible and efficient non-viral platform for the delivery of large genes into mammalian cells.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Two major pathways of recombination-dependent DNA replication, “join-copy” and “join-cut-copy,” can be distinguished in phage T4: join-copy requires only early and middle genes, but two late proteins, endonuclease VII and terminase, are uniquely important in the join-cut-copy pathway. In wild-type T4, timing of these pathways is integrated with the developmental program and related to transcription and packaging of DNA. In primase mutants, which are defective in origin-dependent lagging-strand DNA synthesis, the late pathway can bypass the lack of primers for lagging-strand DNA synthesis. The exquisitely regulated synthesis of endo VII, and of two proteins from its gene, explains the delay of recombination-dependent DNA replication in primase (as well as topoisomerase) mutants, and the temperature-dependence of the delay. Other proteins (e.g., the single-stranded DNA binding protein and the products of genes 46 and 47) are important in all recombination pathways, but they interact differently with other proteins in different pathways. These homologous recombination pathways contribute to evolution because they facilitate acquisition of any foreign DNA with limited sequence homology during horizontal gene transfer, without requiring transposition or site-specific recombination functions. Partial heteroduplex repair can generate what appears to be multiple mutations from a single recombinational intermediate. The resulting sequence divergence generates barriers to formation of viable recombinants. The multiple sequence changes can also lead to erroneous estimates in phylogenetic analyses.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Human Dmc1 protein, a meiosis-specific homolog of Escherichia coli RecA protein, has previously been shown to promote DNA homologous pairing and strand-exchange reactions that are qualitatively similar to those of RecA protein and Rad51. Human and yeast Rad51 proteins each form a nucleoprotein filament that is very similar to the filament formed by RecA protein. However, recent studies failed to find a similar filament made by Dmc1 but showed instead that this protein forms octameric rings and stacks of rings. These observations stimulated further efforts to elucidate the mechanism by which Dmc1 promotes the recognition of homology. Dmc1, purified to a state in which nuclease and helicase activities were undetectable, promoted homologous pairing and strand exchange as measured by fluorescence resonance energy transfer (FRET). Observations on the intermediates and products, which can be distinguished by FRET assays, provided direct evidence of a three-stranded synaptic intermediate. The effects of helix stability and mismatched base pairs on the recognition of homology revealed further that human Dmc1, like human Rad51, requires the preferential breathing of A⋅T base pairs for recognition of homology. We conclude that Dmc1, like human Rad51 and E. coli RecA protein, promotes homologous pairing and strand exchange by a “synaptic pathway” involving a three-stranded nucleoprotein intermediate, rather than by a “helicase pathway” involving the separation and reannealing of DNA strands.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We describe the construction of a safe, replication-defective and efficient lentiviral vector suitable for in vivo gene delivery. The reverse transcription of the vector was found to be a rate-limiting step; therefore, promoting the reaction inside the vector particles before delivery significantly enhanced the efficiency of gene transfer. After injection into the brain of adult rats, sustained long-term expression of the transgene was obtained in the absence of detectable pathology. A high proportion of the neurons in the areas surrounding the injection sites of the vector expressed the transduced beta-galactosidase gene. This pattern was invariant in animals sacrificed several months after a single administration of the vector. Transduction occurs by integration of the vector genome, as it was abolished by a single amino acid substitution in the catalytic site of the integrase protein incorporated in the vector. Development of clinically acceptable derivatives of the lentiviral vector may thus enable the sustained delivery of significant amounts of a therapeutic gene product in a wide variety of somatic tissues.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Retroviruses can utilize a variety of cell-surface proteins for binding and entry into cells, and the cloning of several of these viral receptors has allowed refinement of models to explain retrovirus tropism. A single receptor appears to be necessary and sufficient for entry of many retroviruses, but exceptions to this simple model are accumulating. For example, HIV requires two proteins for cell entry, neither of which alone is sufficient; 10A1 murine leukemia virus can enter cells by using either of two distinct receptors; two retroviruses can use different receptors in some cells but use the same receptor for entry into other cells; and posttranslational protein modifications and secreted factors can dramatically influence virus entry. These findings greatly complicate the rules governing retrovirus tropism. The mechanism underlying retrovirus evolution to use many receptors for cell entry is not clear, although some evidence supports a mutational model for the evolution of new receptor specificities. Further study of factors that govern retrovirus entry into cells are important for achieving high-efficiency gene transduction to specific cells and for the design of retroviral vectors to target additional receptors for cell entry.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Agrobacterium tumefaciens VirB proteins are essential for gene transfer from bacteria to plants. These proteins are postulated to form a transport pore to allow transfer of the T-strand DNA intermediate. To study the function of the VirB proteins in DNA transfer, we developed an expression system in A. tumefaciens. Analysis of one VirB protein, VirB9, by Western blot assays showed that under nonreducing conditions VirB9, when expressed alone, migrates as a approximately 31-kDa band but that it migrates as a approximately 36-kDa band when expressed with all other VirB proteins. The 36-kDa band is converted to the 31-kDa band by the reducing agent 2-mercaptoethanol. Using strains that contain a deletion in a defined virB gene and strains that express specific VirB proteins, we demonstrate that the 36-kDa band is composed of VirB9 and VirB7 that are linked to each other by a disulfide bond. Mutational studies demonstrate that cysteine residues at positions 24 of VirB7 and 262 of VirB9 participate in the formation of this complex.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The Raf-1 protein kinase is the best-characterized downstream effector of activated Ras. Interaction with Ras leads to Raf-1 activation and results in transduction of cell growth and differentiation signals. The details of Raf-1 activation are unclear, but our characterization of a second Ras-binding site in the cysteine-rich domain (CRD) and the involvement of both Ras-binding sites in effective Raf-1-mediated transformation provides insight into the molecular aspects and consequences of Ras-Raf interactions. The Raf-1 CRD is a member of an emerging family of domains, many of which are found within signal transducing proteins. Several contain binding sites for diacylglycerol (or phorbol esters) and phosphatidylserine and are believed to play a role in membrane translocation and enzyme activation. The CRD from Raf-1 does not bind diacylglycerol but interacts with Ras and phosphatidylserine. To investigate the ligand-binding specificities associated with CRDs, we have determined the solution structure of the Raf-1 CRD using heteronuclear multidimensional NMR. We show that there are differences between this structure and the structures of two related domains from protein kinase C (PKC). The differences are confined to regions of the CRDs involved in binding phorbol ester in the PKC domains. Since phosphatidylserine is a common ligand, we expect its binding site to be located in regions where the structures of the Raf-1 and PKC domains are similar. The structure of the Raf-1 CRD represents an example of this family of domains that does not bind diacylglycerol and provides a framework for investigating its interactions with other molecules.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We have devised a microspectroscopic strategy for assessing the intracellular (re)distribution and the integrity of the primary structure of proteins involved in signal transduction. The purified proteins are fluorescent-labeled in vitro and reintroduced into the living cell. The localization and molecular state of fluorescent-labeled protein kinase C beta I isozyme were assessed by a combination of quantitative confocal laser scanning microscopy, fluorescence lifetime imaging microscopy, and novel determinations of fluorescence resonance energy transfer based on photobleaching digital imaging microscopy. The intensity and fluorescence resonance energy transfer efficiency images demonstrate the rapid nuclear translocation and ensuing fragmentation of protein kinase C beta I in BALB/c3T3 fibroblasts upon phorbol ester stimulation, and suggest distinct, compartmentalized roles for the regulatory and catalytic fragments.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We created a "knockout" embryonic stem cell via targeted disruption of the phosphatidylinositol glycan class A (Pig-a) gene, resulting in loss of expression of cell surface glycosyl phosphatidylinositol-anchored proteins and reproducing the mutant phenotype of the human disease paroxysmal nocturnal hemoglobinuria. Morphogenesis of Pig-a- embryoid bodies (EB) in vitro was grossly aberrant and, unlike EB derived from normal embryonic stem cells, Pig-A EB produced no secondary hematopoietic colonies. Chimeric EB composed of control plus Pig-A- cells, however, appeared normal, and hematopoiesis from knock-out cells was reconstituted. Transfer in situ of glycosyl phosphatidylinositol-anchored proteins from normal to knock-out cells was demonstrated by two-color fluorescent analysis, suggesting a possible mechanism for these functional effects. Hematopoietic cells with mutated PIG-A genes in humans with paroxysmal nocturnal hemoglobinuria may be subject to comparable pathophysiologic processes and amenable to similar therapeutic protein transfer.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Nerve growth factor (NGF) stimulates functional recovery from cognitive impairments associated with aging, either when administered as a purified protein or by means of gene transfer to the basal forebrain. Because gene transfer procedures need to be tested in long-term experimental paradigms to assess their in vivo efficiency, we have used ex vivo experimental gene therapy to provide local delivery of NGF to the aged rat brain over a period of 2.5 months by transplanting immortalized central nervous system-derived neural stem cells genetically engineered to secrete NGF. By grafting them at two independent locations in the basal forebrain, medial septum and nucleus basalis magnocellularis, we show that functional recovery as assessed in the Morris water maze can be achieved by neurotrophic stimulation of any of these cholinergic cell groups. Moreover, the cholinergic neurons in the grafted regions showed a hypertrophic response resulting in a reversal of the age-associated atrophy seen in the learning-impaired aged control rats. Long-term expression of the transgene lead to an increased NGF tissue content (as determined by NGF-ELISA) in the transplanted regions up to at least 10 weeks after grafting. We conclude that the gene transfer procedure used here is efficient to provide the brain with a long-lasting local supply of exogenous NGF, induces long-term functional recovery of cognitive functions, and that independent trophic stimulation of the medial septum or nucleus basalis magnocellularis has similar consequences at the behavioral level.