985 resultados para Orthogonal polynomial
Resumo:
000 Mathematics Subject Classification: Primary 16R50, Secondary 16W55.
Resumo:
2000 Mathematics Subject Classification: 13P05, 14M15, 14M17, 14L30.
Resumo:
2000 Mathematics Subject Classification: Primary 81R50, 16W50, 16S36, 16S37.
Resumo:
2000 Mathematics Subject Classification: 12D10.
Resumo:
2000 Mathematics Subject Classification: Primary 20F55, 13F20; Secondary 14L30.
Resumo:
Resolutions which are orthogonal to at least one other resolution (RORs) and sets of m mutually orthogonal resolutions (m-MORs) of 2-(v, k, λ) designs are considered. A dependence of the number of nonisomorphic RORs and m-MORs of multiple designs on the number of inequivalent sets of v/k − 1 mutually orthogonal latin squares (MOLS) of size m is obtained. ACM Computing Classification System (1998): G.2.1.
Resumo:
2010 Mathematics Subject Classification: Primary 35S05, 35J60; Secondary 35A20, 35B08, 35B40.
Resumo:
AMS subject classification: 68Q22, 90C90
Resumo:
An iterative Monte Carlo algorithm for evaluating linear functionals of the solution of integral equations with polynomial non-linearity is proposed and studied. The method uses a simulation of branching stochastic processes. It is proved that the mathematical expectation of the introduced random variable is equal to a linear functional of the solution. The algorithm uses the so-called almost optimal density function. Numerical examples are considered. Parallel implementation of the algorithm is also realized using the package ATHAPASCAN as an environment for parallel realization.The computational results demonstrate high parallel efficiency of the presented algorithm and give a good solution when almost optimal density function is used as a transition density.
Resumo:
ACM Computing Classification System (1998): F.2.1, G.1.5, I.1.2.
Resumo:
Given the polynomials f, g ∈ Z[x] of degrees n, m, respectively, with n > m, three new, and easy to understand methods — along with the more efficient variants of the last two of them — are presented for the computation of their subresultant polynomial remainder sequence (prs). All three methods evaluate a single determinant (subresultant) of an appropriate sub-matrix of sylvester1, Sylvester’s widely known and used matrix of 1840 of dimension (m + n) × (m + n), in order to compute the correct sign of each polynomial in the sequence and — except for the second method — to force its coefficients to become subresultants. Of interest is the fact that only the first method uses pseudo remainders. The second method uses regular remainders and performs operations in Q[x], whereas the third one triangularizes sylvester2, Sylvester’s little known and hardly ever used matrix of 1853 of dimension 2n × 2n. All methods mentioned in this paper (along with their supporting functions) have been implemented in Sympy and can be downloaded from the link http://inf-server.inf.uth.gr/~akritas/publications/subresultants.py
Resumo:
Dedicated to the memory of the late professor Stefan Dodunekov on the occasion of his 70th anniversary. We classify up to multiplier equivalence maximal (v, 3, 1) optical orthogonal codes (OOCs) with v ≤ 61 and maximal (v, 3, 2, 1) OOCs with v ≤ 99. There is a one-to-one correspondence between maximal (v, 3, 1) OOCs, maximal cyclic binary constant weight codes of weight 3 and minimum dis tance 4, (v, 3; ⌊(v − 1)/6⌋) difference packings, and maximal (v, 3, 1) binary cyclically permutable constant weight codes. Therefore the classification of (v, 3, 1) OOCs holds for them too. Some of the classified (v, 3, 1) OOCs are perfect and they are equivalent to cyclic Steiner triple systems of order v and (v, 3, 1) cyclic difference families.
Resumo:
MSC 2010: 33C47, 42C05, 41A55, 65D30, 65D32
Resumo:
2010 Mathematics Subject Classification: 14L99, 14R10, 20B27.
Resumo:
Electro-optical transceivers can be implemented employing all-analog signal processing in order to achieve low values of power consumption and latency. This paper shows that the spectral efficiency of such solutions can be increased by combining orthogonal multicarrier techniques and off-the-shelf microwave components. A real-time 108-Gbit/s experiment was performed emulating a wavelength division multiplexing (WDM) system composed of five optical channels. The optical carriers were provided by an externally injected gain switched optical frequency comb. Each optical channel transmitted a 21.6-Gbit/s orthogonal subcarrier multiplexing (SCM) signal that was modulated and demodulated in the electrical domain without the requirement for digital signal processing. The net data rate remained higher than 100 Gbit/s after taking into account forward error correction overheads. The use of orthogonally overlapping subchannels achieves an unprecedented spectral efficiency in all-analog real-time broadband WDM/SCM links.