976 resultados para Orthodontic mini-implants
Resumo:
Background: Immunosuppressive agents may induce severe changes on bone metabolism and may impair the osseointegration process during the implant healing. No data are available concerning the influence of cyclosporin A on dental implants previously integrated to the bone. The aim of this study was to evaluate the influence of cyclosporin A administration on the mechanical retention of bone previously integrated to dental implants.Methods: Eighteen female New Zealand rabbits were submitted to an implant surgery. Each animal received one commercial dental implant of 10 x 3.75 mm. After 12 weeks of an undisturbed healing period, six animals were randomly sacrificed and the removal torque test was performed (group A). In addition, six animals were submitted to a daily injection of cyclosporin A in a dosage of 10 mg/kg (group C), and six animals received saline solution as a control (group B). After 12 weeks of cyclosporin A administration, groups B and C were sacrificed and submitted to a removal torque test in which higher values can be interpreted as higher mechanical bone retention to the implant surface or higher osseointegration.Results: the removal torque results were 30.5 (+/- 9.8) Ncm for group A, 50.17 (+/- 17.5) Ncm for group B, and 26 (+/- 7.8) Ncm for group C. The statistical analysis showed significant differences between groups A and B (P < 0.05) and groups B and C (P < 0.01).Conclusion: Cyclosporin A administration may impair the mechanical retention of dental implants previously integrated to the bone.
Resumo:
Objective: the aim of this study was to assess, through Raman spectroscopy, the incorporation of calcium hydroxyapatite (CHA; similar to 960 cm(-1)), and scanning electron microscopy (SEM), the bone quality on the healing bone around dental implants after laser photobiomodulation ( lambda 830 nm). Background Data: Laser photobiomodulation has been successfully used to improve bone quality around dental implants, allowing early wearing of prostheses. Methods: Fourteen rabbits received a titanium implant on the tibia; eight of them were irradiated with lambda 830 nm laser ( seven sessions at 48-h intervals, 21.5 J/cm(2) per point, 10 mW, phi similar to 0.0028 cm(2), 86 J per session), and six acted as control. The animals were sacrificed 15, 30, and 45 days after surgery. Specimens were routinely prepared for Raman spectroscopy and SEM. Eight readings were taken on the bone around the implant. Results: the results showed significant differences on the concentration of CHA on irradiated and control specimens at both 30 and 45 days after surgery ( p < 0.001). Conclusion: It is concluded that infrared laser photobiomodulation does improve bone healing, and this may be safely assessed by Raman spectroscopy or SEM.
Resumo:
The purpose of this study was to histomorphologically evaluate (in dog's teeth) the influence of tooth movement in the healing of chronic periapical lesions. Thirty roots of incisors and premolars of two dogs (1-year-old) were used in this research. After pulpectomy, the root canals remained exposed to the oral environment for 6 months for achievement of periapical lesions. Twenty root canals were biomechanically prepared and received a calcium hydroxide dressing for 14 days before being filled with gutta-percha points and Sealapex sealer. After root canal treatment, some incisors were submitted to orthodontic movement, whereas the other roots remained without orthodontic movement. The orthodontic appliance was removed at 5 months and 15 days after treatment, the dogs were killed 15 days later and the specimens were prepared for histomorphological analysis. The results showed that the orthodontic movement delayed, but did not hinder, the periapical healing process. (J Endod 2006;32:115-119)
Resumo:
Background: This study investigated the influence of estrogen deficiency and its treatment with estrogen and alendronate on the removal torque of osseointegrated titanium implants.Methods: Fifty-eight female Wistar rats received a titanium implant in the tibia metaphysis. After 60 days, which was needed for implant osseointegration, the animals were randomly divided into five groups: control (CTLE; N = 10), sham surgery (SHAM; N = 12), ovariectomy (OVX; N = 12), ovariectomy followed by hormone replacement (EST; N = 12), and ovariectomy followed by treatment with alendronate (ALE; N = 12). The CTLE group was sacrificed to confirm osseointegration, whereas the remaining groups were submitted to sham surgery or ovariectomy according to their designations. After 90 days, these animals were also sacrificed. Densitometry of femur and lumbar vertebrae was performed by dual-energy x-ray absorptiometry (DXA) to confirm systemic impairment of the animals. All implants were subjected to removal torque.Results: Densitometric analysis of the femur and lumbar vertebrae confirmed a systemic impairment of the animals, disclosing lower values of bone mineral density for OVX. Analysis of the removal torque of the implants showed statistically lower values (P <0.05) for the OVX group in relation to the other groups. However, the group treated with alendronate (ALE group) presented significantly higher torque values compared to the others.Conclusion: According to this study, estrogen deficiency was observed to have a negative influence on the removal torque of osseointegrated implants, whereas treatment with alendronate
Resumo:
Surface modifications have been applied in endosteal bone devices in order to improve the osseointegration through direct contact between neoformed bone and the implant without an intervening soft tissue layer. Surface characteristics of titanium implants have been modified by addictive methods, such as metallic titanium, titanium oxide and hydroxyapatite powder plasma spray, as well as by subtractive methods, such as acid etching, acid etching associated with sandblasting by either AlO2 or TiO2, and recently by laser ablation. Surface modification for dental and medical implants can be obtained by using laser irradiation technique where its parameters like repetition rate, pulse energy, scanning speed and fluency must be taken into accounting to the appropriate surface topography. Surfaces of commercially pure Ti (cpTi) were modified by laser Nd:YVO4 in nine different parameters configurations, all under normal atmosphere. The samples were characterized by SEM and XRD refined by Rietveld method. The crystalline phases alpha Ti, beta Ti, Ti6O, Ti3O and TiO were formed by the melting and fast cooling processes during irradiation. The resulting phases on the irradiated surface were correlated with the laser beam parameters: the aim of the present work was to control titanium oxides formations in order to improve implants osseointegration by using a laser irradiation technique which is of great importance to biomaterial devices due to being a clean and reproducible process. (c) 2007 Elsevier B.V. All rights reserved.
Resumo:
In this study we analyzed possible damages that vaporization from laser radiation could cause to implant material. Fifteen standard titanium implants, measuring 3.75 mm in diameter by 7 mm in length, were placed into the upper and lower jaws of three dogs according to Branemark's system. After osseointegration, all implants were exposed. In group I (control) conventional exposure with a punch was used; in group II, a CO2 laser with 2 W (power density: 256 W/cm(2); fluency: 0.077 J/cm(2), and a pulse mode of 0.30 ms) was used, and in group III 4 W (power density: 512 W/cm(2), fluency: 0.154 J/cm(2), and a pulse mode of 0.30 ms) was used. After vaporization, the cover screws were removed and sent for metallographic examination. The results showed that cover screws irradiated with 2 and 4 W power caused no superficial or microstructural alteration. The results also showed that the prescribed power densities, fluencies, and the use of the pulse mode were suitable for exposing implants without damage to tissue or implant material. (C) 2002 Laser Institute of America.
Resumo:
It is usually believed that repair in alveolar bone during orthodontic movement occurs after decreasing of force. However, we have recently observed signs of repair in previously resorbed cementum from human teeth exposed to continuous forces. In order to test the hypothesis that bone resorption and deposition occur concomitantly at the pressure areas, a continuous 15 cN force was applied in a buccal direction to upper first molars from eight 2.5-month-old male Wistar rats for 3 d (n=4) and 7 d (n=4). As a control, two additional rats did not have their molars moved. Maxillae were fixed in 2% glutaraldehyde + 2.5% formaldehyde, under microwave irradiation, decalcified in ethylenediaminetetraacetic acid, and processed for transmission electron microscopy. Specimens from one rat from each group were processed for tartrate-resistant acid phosphatase (TRAP) histochemistry. At both the times studied, the alveolar bone surface at the pressure areas showed numerous TRAP-positive osteoclasts, which were apposed to resorption lacunae. In addition, osteoblasts with numerous synthesis organelles were present in the neighboring areas overlying an organic matrix. Thus, this study provides evidence that the application of continuous forces produces concomitant bone resorption and formation at the pressure areas in rat molars.