976 resultados para One-Sided Growth


Relevância:

30.00% 30.00%

Publicador:

Resumo:

The Ipil-ipil (Leucaena leucocephal) leaf analyzed for crude protein (CP), fat, crude fibre (CF), ash content, moisture content and nitrogen free extract (NFE). The CP 23± 0.12 % , fat 8 ± 0.11 %, CF 18 ± 0.15 % , ash 10 ± 0.13 %, moisture 14. ± .16% and NFE 29.± 1.10 % were recorded. A twenty one days experiment was conduced to assess the response of juvenile monosex tilapia with different iso-nitrogenous formulated diets for find out the feasibility study of using ipil-ipil leaf meals as feed ingredient for juvenile tilapia. Three experimental diets were formulated by using fish meal, soybean meal, rice bran and ipil ipil leaf meal. One control diet was formulated by using fish meal, soybean meal and rice bran. Considering the high demand, limited availability of fish meal and soybean meal, ipil ipil leaf meal was incorporated in juvenile tilapia feed. Among plant protein ingredients ipil ipil leaf meal was considered as the most nutritive plant protein source after soybean meal. However, high concentration of toxic element limited the incorporation level of ipil ipil leaf meal in fish feed. Use of 15 % ipil ipil leaf meal in fish feed was more significant from the view of growth performance and economics. The higher Absolute Growth was 1119.26 gm, higher Specific Growth Rate was 6.52% /day higher Feed Conversion Efficiency was 41.23% , higher Protein Efficiency Ratio was 1.178 and higher Average Daily Growth rate was 14.00% recorded in diet-4 ( which contained 15% IILM). The lower Feed Conversion Ratio 2.42 and lower cost for per unit production 34.65 taka/kg were recorded in diet-4. The higher cost for per unit fish production 45.6 tk./kg was recorded for diet-1 where no ipil ipil leaf meal.. The results suggest that tree legumes Ipil-ipil (Leucaena leucocephal) leaf has potential and excellent source of feed ingredients as protein supplements for juvenile monosex

Relevância:

30.00% 30.00%

Publicador:

Resumo:

It is known that an adequately large amount of work has been devoted to investigations on the influence of temperature on the growth period of aquatic invertebrates. However, the action of the given factors on the basic biological characteristics of embryonic growth in crustaceans is virtually unknown. An experimental study of the effectiveness of the transformation of matter and energy during the period of embryogenesis in the isopod Asellus aquaticus L. under different constant temperatures was carried out. Specimens were collected in the quarry lakes of the Kurasovshchin zone (city-Minsk). The authors developed a quantitative analysis of the basic energetic properties of animals during one of the physiological stages at different constant temperatures, which allows one to determine the temperature range in which the expenditure of energy, at a given instance during embryonic growth, is minimised. For A. aquaticus this range is represented by the limits 10-22°C, during which the least expenditure of energy is observed between 14.5 and 18.8°C.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Abstract Environmental changes may have an impact on life conditions of the fish, e.g. food supply for the fish. The prevailing environmental conditions apply evenly to all age groups of one stock. Small fish have high growth rates, whereas large fish grow with low rates. But, it can be shown on the basis of the von Bertalanffy-growth model that it is sufficient to know only the growth rate of one single age group to compute the growth rates of all other age groups. The growth rate of a reference fish GRF (e.g. a fish with a body mass of 1 kg) was introduced as a reference growth describing the current food condition of all age groups of the stock. As an example a time series of the reference-growth rate of the northern cod stock (NAFO, 3K) was computed for the time span 1979 to 1999. For the northern cod stock it can be observed that environmental conditions caused growth rates below the long-term mean for seven years in a row. After a prolonged hunger period the fish stock collapsed in 1992 also by the impact of fisheries - and this was probably not a coincidence. Now, with the reference-growth rate GRF a simple and handy parameter was found to summarize the influence of the environmental conditions on growth and other derived models and therefore makes it easier to compute the influence of environmental changes within stock assessment. Zusammenfassung Veränderungen der Umwelt können Auswirkungen auf die Lebensbedingungen der Fische haben, z. B. auf das Nahrungsangebot der Fische. Die vorherrschenden Umgebungsbedingungen wirken gleichmäßig auf alle Altersgruppen eines Bestandes, wobei typischer Weise kleineFische hohe Wachstumsraten haben, während die großen Fische mit niedrigen Raten wachsen. Auf der Grundlage des von Bertalanffy-Wachstumsmodells kann gezeigt werden, dass es ausreicht, nur die Wachstumsrate von einer einzigen Altersgruppe zu kennen, um die Wachstumsraten von allen anderen Altersgruppen berechnen zu können. Die Wachstumsrate eines Referenz-Fisches (z.B. eines Fisches mit einer Körpermasse von 1 kg) wurde als Referenz-Wachstum GRF eingeführt, die den aktuellen Zustand des Nahrungsangebots füralle Altersgruppen des Bestandes beschreibt. Als Beispiel wurde einer Zeitreihe der Referenz-Wachstumsraten des nördlichen Kabeljaubestandes (NAFO, 3K) für die Zeitsraum 1979 bis 1999 berechnet. Für diesen Kabeljaubestand war zu beobachten, dass Umgebungsbedingungen für sieben Jahre in Folge Wachstumsraten unter dem langjährigen Mittelwert verursachten. Nach einer längeren Hungerperiode kollabierte dieser Fischbestand im Jahr 1992 auch durch den Einfluß der Fischerei - und dies war sicher kein Zufall. Jetzt, mit der Referenz-Wachstumsrate GRF, ist ein einfacher und handlicher Parameter gefunden, der es gestattet den Einfluss der Umweltbedingungen auf die Wachstumsbedingungen und andere davon abgeleitete Modelle zusammenzufassen. Dies macht es einfach, den Einfluss von Umweltveränderungen innerhalb der Bestandsabschätzungen zu berechnen.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The assembly history of massive galaxies is one of the most important aspects of galaxy formation and evolution. Although we have a broad idea of what physical processes govern the early phases of galaxy evolution, there are still many open questions. In this thesis I demonstrate the crucial role that spectroscopy can play in a physical understanding of galaxy evolution. I present deep near-infrared spectroscopy for a sample of high-redshift galaxies, from which I derive important physical properties and their evolution with cosmic time. I take advantage of the recent arrival of efficient near-infrared detectors to target the rest-frame optical spectra of z > 1 galaxies, from which many physical quantities can be derived. After illustrating the applications of near-infrared deep spectroscopy with a study of star-forming galaxies, I focus on the evolution of massive quiescent systems.

Most of this thesis is based on two samples collected at the W. M. Keck Observatory that represent a significant step forward in the spectroscopic study of z > 1 quiescent galaxies. All previous spectroscopic samples at this redshift were either limited to a few objects, or much shallower in terms of depth. Our first sample is composed of 56 quiescent galaxies at 1 < z < 1.6 collected using the upgraded red arm of the Low Resolution Imaging Spectrometer (LRIS). The second consists of 24 deep spectra of 1.5 < z < 2.5 quiescent objects observed with the Multi-Object Spectrometer For Infra-Red Exploration (MOSFIRE). Together, these spectra span the critical epoch 1 < z < 2.5, where most of the red sequence is formed, and where the sizes of quiescent systems are observed to increase significantly.

We measure stellar velocity dispersions and dynamical masses for the largest number of z > 1 quiescent galaxies to date. By assuming that the velocity dispersion of a massive galaxy does not change throughout its lifetime, as suggested by theoretical studies, we match galaxies in the local universe with their high-redshift progenitors. This allows us to derive the physical growth in mass and size experienced by individual systems, which represents a substantial advance over photometric inferences based on the overall galaxy population. We find a significant physical growth among quiescent galaxies over 0 < z < 2.5 and, by comparing the slope of growth in the mass-size plane dlogRe/dlogM with the results of numerical simulations, we can constrain the physical process responsible for the evolution. Our results show that the slope of growth becomes steeper at higher redshifts, yet is broadly consistent with minor mergers being the main process by which individual objects evolve in mass and size.

By fitting stellar population models to the observed spectroscopy and photometry we derive reliable ages and other stellar population properties. We show that the addition of the spectroscopic data helps break the degeneracy between age and dust extinction, and yields significantly more robust results compared to fitting models to the photometry alone. We detect a clear relation between size and age, where larger galaxies are younger. Therefore, over time the average size of the quiescent population will increase because of the contribution of large galaxies recently arrived to the red sequence. This effect, called progenitor bias, is different from the physical size growth discussed above, but represents another contribution to the observed difference between the typical sizes of low- and high-redshift quiescent galaxies. By reconstructing the evolution of the red sequence starting at z ∼ 1.25 and using our stellar population histories to infer the past behavior to z ∼ 2, we demonstrate that progenitor bias accounts for only half of the observed growth of the population. The remaining size evolution must be due to physical growth of individual systems, in agreement with our dynamical study.

Finally, we use the stellar population properties to explore the earliest periods which led to the formation of massive quiescent galaxies. We find tentative evidence for two channels of star formation quenching, which suggests the existence of two independent physical mechanisms. We also detect a mass downsizing, where more massive galaxies form at higher redshift, and then evolve passively. By analyzing in depth the star formation history of the brightest object at z > 2 in our sample, we are able to put constraints on the quenching timescale and on the properties of its progenitor.

A consistent picture emerges from our analyses: massive galaxies form at very early epochs, are quenched on short timescales, and then evolve passively. The evolution is passive in the sense that no new stars are formed, but significant mass and size growth is achieved by accreting smaller, gas-poor systems. At the same time the population of quiescent galaxies grows in number due to the quenching of larger star-forming galaxies. This picture is in agreement with other observational studies, such as measurements of the merger rate and analyses of galaxy evolution at fixed number density.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Research into the production ecology of chalk streams using a large artificial recirculating stream is described. Physical chemical processes including calcium and inorganic phosphate levels, and exchange of gaseous carbon dioxide in both a simple closed system and a circulating system with gravel substrate have been monitored in both light and dark conditions. Further experiments were concerned with the seasonal changes in algal growth over the gravel substrate with constant water velocities and replenishment. The algal population, composed mainly of the diatoms Achnanthes minutissima, Meridion circulare, Nitzschia fonticola and Synedra ulna reached a peak in mid May and declined rapidly during June. Concentrations of phosphate phosphorus fell as the diatoms grew but was not thought to limit growth. Silicate concentrations followed the diatom cycle closely but never fell below 0.8 mg/l Si. It is possible that one of the nutrients may have been limiting the rate of growth due to steep diffusion gradients through the algal mat. In the last summer and autumn a hard calcareous crust composed of the green alga Gongrosira incrustans and the blue green alga Homeothrix varians , developed. The channel stream is compared with the natural conditions found in chalk streams.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The aim of this research is to study the impact of religious coping, social support and subjective severity on Posttraumatic Growth (PTG) in people who lost their homes after the earthquake in Chile in 2010 and who now live in transitional shelters. One hundred sixteen adult men and women were evaluated using a subjective severity scale, the Posttraumatic Growth Inventory (PTGI), the Multidimensional Scale of Perceived Social Support (MSPSS) scale of social support and the Brief RCOPE scale of religious coping. The multiple linear regression analysis shows that social support and positive religious coping have an impact on PTG. On using a bootstrap estimate, it was found that positive religious coping fully mediates the relationship between subjective severity and PTG.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Phosphoglucose isomerase (PGI) catalyzes the reversible isomerization of glucose-6-phosphate and fructose-6-phosphate. It is involved in glycolysis and in the regeneration of glucose-6-P molecules in the oxidative pentose phosphate pathway (OPPP). In chloroplasts of illuminated mesophyll cells PGI also connects the Calvin-Benson cycle with the starch biosynthetic pathway. In this work we isolated pgi1-3, a mutant totally lacking pPGI activity as a consequence of aberrant intron splicing of the pPGI encoding gene, PGI1. Starch content in pgi1-3 source leaves was ca. 10-15% of that of wild type (WT) leaves, which was similar to that of leaves of pgi1-2, a T-DNA insertion pPGI null mutant. Starch deficiency of pgi1 leaves could be reverted by the introduction of a sex1 null mutation impeding beta-amylolytic starch breakdown. Although previous studies showed that starch granules of pgi1-2 leaves are restricted to both bundle sheath cells adjacent to the mesophyll and stomata guard cells, microscopy analyses carried out in this work revealed the presence of starch granules in the chloroplasts of pgi1-2 and pgi1-3 mesophyll cells. RT-PCR analyses showed high expression levels of plastidic and extra-plastidic beta-amylase encoding genes in pgi1 leaves, which was accompanied by increased beta-amylase activity. Both pgi1-2 and pgi1-3 mutants displayed slow growth and reduced photosynthetic capacity phenotypes even under continuous light conditions. Metabolic analyses revealed that the adenylate energy charge and the NAD(P) H/NAD(P) ratios in pgi1 leaves were lower than those of WT leaves. These analyses also revealed that the content of plastidic 2-C-methyl-D-erythritol 4-phosphate (MEP)-pathway derived cytokinins (CKs) in pgi1 leaves were exceedingly lower than in WT leaves. Noteworthy, exogenous application of CKs largely reverted the low starch content phenotype of pgi1 leaves. The overall data show that pPGI is an important determinant of photosynthesis, energy status, growth and starch accumulation in mesophyll cells likely as a consequence of its involvement in the production of OPPP/glycolysis intermediates necessary for the synthesis of plastidic MEP-pathway derived hormones such as CKs.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Growth is one of the most important characteristics of cultured species. The objective of this study was to determine the fitness of linear, log linear, polynomial, exponential and Logistic functions to the growth curves of Macrobrachium rosenbergii obtained by using weekly records of live weight, total length, head length, claw length, and last segment length from 20 to 192 days of age. The models were evaluated according to the coefficient of determination (R2), and error sum off square (ESS) and helps in formulating breeders in selective breeding programs. Twenty full-sib families consisting 400 PLs each were stocked in 20 different hapas and reared till 8 weeks after which a total of 1200 animals were transferred to earthen ponds and reared up to 192 days. The R2 values of the models ranged from 56 – 96 in case of overall body weight with logistic model being the highest. The R2 value for total length ranged from 62 to 90 with logistic model being the highest. In case of head length, the R2 value ranged between 55 and 95 with logistic model being the highest. The R2 value for claw length ranged from 44 to 94 with logistic model being the highest. For last segment length, R2 value ranged from 55 – 80 with polynomial model being the highest. However, the log linear model registered low ESS value followed by linear model for overall body weight while exponential model showed low ESS value followed by log linear model in case of head length. For total length the low ESS value was given by log linear model followed by logistic model and for claw length exponential model showed low ESS value followed by log linear model. In case of last segment length, linear model showed lowest ESS value followed by log linear model. Since, the model that shows highest R2 value with low ESS value is generally considered as the best fit model. Among the five models tested, logistic model, log linear model and linear models were found to be the best models for overall body weight, total length and head length respectively. For claw length and last segment length, log linear model was found to be the best model. These models can be used to predict growth rates in M. rosenbergii. However, further studies need to be conducted with more growth traits taken into consideration

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Ichthyoplankton surveys were conducted in shelf and slope waters of the northern Gulf of Mexico during the months of May–September in 2005 and 2006 to investigate the potential role of this region as spawning and nursery habitat of sailfish (Istiophorus platypterus). During the two-year study, 2426 sailfish larvae were collected, ranging in size from 2.0 to 24.3 mm standard length. Mean density for all neuston net collections (n=288) combined was 1.5 sailfish per 1000 m2, and maximum density was observed within frontal features created by hydrodynamic convergence (2.3 sailfish per 1000 m2). Sagittal otoliths were extracted from 1330 larvae, and otolith microstructure analysis indicated that the sailfish ranged in age from 4 to 24 days after hatching (mean=10.5 d, standard deviation [SD]=3.2 d). Instantaneous growth coefficients (g) among survey periods (n=5) ranged from 0.113 to 0.127, and growth peaked during July 2005 collections when density within frontal features was highest. Daily instantaneous mortality rates (Z) ranged from 0.228 to 0.381, and Z was indexed to instantaneous weight-specific growth (G) to assess stage-specific production potential of larval cohorts. Ratios of G to Z were greater than 1.0 for all but one cohort examined, indicating that cohorts were gaining biomass during the majority of months investigated. Stage-specific production potential, in combination with catch rates and densities of larvae, indicates that the Gulf of Mexico likely represents important spawning and nursery habitat for sailfish.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Although the Atlantic white-sided dolphin (Lagenorhynchus acutus) is one of the most common dolphins off New England, little has been documented about its diet in the western North Atlantic Ocean. Current federal protection of marine mammals limits the supply of animals for investigation to those incidentally caught in the nets of commercial fishermen with observers aboard. Stomachs of 62 L. acutus were examined; of these 62 individuals, 28 of them were caught by net and 34 were animals stranded on Cape Cod. Most of the net-caught L. acutus were from the deeper waters of the Gulf of Maine. A single stomach was from the continental slope south of Georges Bank. At least twenty-six fish species and three cephalopod species were eaten. The predominant prey were silver hake (Merluccius bilinearis), spoonarm octopus (Bathypolypus bairdii), and haddock (Melanogrammus aeglefinus). The stomach from a net-caught L. acutus on the continental slope contained 7750 otoliths of the Madeira lanternfish (Ceratoscopelus maderensis). Sand lances (Ammodytes spp.) were the most abundant (541 otoliths) species in the stomachs of stranded L. acutus. Seasonal variation in diet was indicated; pelagic Atlantic herring (Clupea harengus) was the most important prey in summer, but was rare in winter. The average length of fish prey was approximately 200 mm, and the average mantle length of cephalopod prey was approximately 50 mm.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The purpose of this study was to compare the effects of Small-Sided Games (SSG) vs. Interval Training (IT) in soccer training on aerobic fitness and physical enjoyment in youth elite soccer players during the last 8 weeks of the season. Seventeen U-16 male soccer players (age = 15.5 +/- 0.6 years, and 8.5 years of experience) of a Spanish First Division club academy were randomized to 2 different groups for 6 weeks: SSG group (n = 9) and IT group (n = 8). In addition to the usual technical and tactical sessions and competitive games, the SSG group performed 11 sessions with different SSGs, whereas the IT group performed the same number of sessions of IT. Players were tested before and after the 6-week training intervention with a continuous maximal multistage running field test and the counter movement jump test (CMJ). At the end of the study, players answered the physical activity enjoyment scale (PACES). During the study, heart rate (HR) and session perceived effort (sRPE) were assessed. SSGs were as effective as IT in maintaining the aerobic fitness in elite young soccer players during the last weeks of the season. Players in the SSG group declared a greater physical enjoyment than IT (P = 0.006; ES = 1.86 +/- 1.07). Coaches could use SSG training during the last weeks of the season as an option without fear of losing aerobic fitness while promoting high physical enjoyment.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Rex sole (Glyptocephalus zachirus) have a wide distribution throughout the North Pacific, ranging from central Baja California to the western Bering Sea. Although rex sole are an important species in the commercial trawl fisheries off the U.S. West Coast, knowledge of their reproductive biology is limited to one study off the Oregon coast where ovaries were analyzed with gross anatomical methods. This study was initiated to determine reproductive and growth parameters specific to rex sole in the Gulf of Alaska (GOA) stock. Female rex sole (n=594) ranging in total length from 166 to 552 mm were collected opportunistically around Kodiak Island, Alaska, from February 2000 to October 2001. All ovaries were analyzed by using standard histological criteria to determine the maturity stage. Year-round sampling of rex sole ovaries confirmed that rex sole are batch spawners and have a protracted spawning season in the GOA that lasts at least eight months, from October to May; the duration of the spawning season and the months of spawning activity are different from those previously estimated. Female rex sole in the GOA had an estimated length at 50% maturity (ML50) of 352 mm, which is greater than the previously estimated ML50 at southern latitudes. The maximum age of collected female rex sole was 29 years, and the estimated age at 50% maturity (MA50) in the GOA was 5.1 years. The von Bertalanffy growth model for rex sole in the GOA was significantly different from the previously estimated model for rex sole off the Oregon coast. This study indicated that there are higher growth rates for rex sole in the GOA than off the Oregon coast and that there are differences in length at maturity and similarity in age at maturity between the two regions.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Walleye pollock (Theragra chalcogramma) is widely distributed in the North Pacific Ocean and plays an important role in coastal subarctic ecosystems. The Japanese Pacific population of this species is one of the most important demersal fishes for commercial fisheries in northern Japan. The population is distributed along the Pacific coast of Hokkaido and the Tohoku area (Fig. 1), which is the southern limit of distribution of the species in the western North Pacific. In Funka Bay, the main spawning ground for this population, pollock spawn from December to March (Kendall and Nakatani, 1992). Planktonic eggs and larvae are transported into the bay, where juveniles usually remain until late July when they reach 60−85 mm in total length (Hayashi et al., 1968; Nakatani and Maeda, 1987). These juvenile pollock then migrate from Funka Bay eastward to the Doto area off southeastern Hokkaido (Honda et al., 2004). Many studies on eggs, larvae, and juveniles of the species have been conducted in or near Funka Bay, but little information is available on the ecology of the early life stages in the Tohoku area. Hashimoto and Ishito (1991) suggested that eggs are transported from Funka Bay southward to the Tohoku area by the coastal branch of the Oyashio Current, but there has been no study to verify this hypothesis.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The interaction of ocean climate and growth conditions during the postsmolt phase is emerging as the primary hypothesis to explain patterns of adult recruitment for individual stocks and stock complexes of Atlantic salmon (Salmo salar). Friedland et al. (1993) first reported that contrast in sea surface temperature (SST) conditions during spring appeared to be related to recruitment of the European stock complex. This hypothesis was further supported by the relationship between cohort specific patterns of recruitment for two index stocks and regional scale SST (Friedland et al., 1998). One of the index stocks, the North Esk of Scotland, was shown to have a pattern of postsmolt growth that was positively correlated with survival, indicating that growth during the postsmolt year controls survival and recruitment (Friedland et al., 2000). A similar scenario is emerging for the North American stock complex where contrast in ocean conditions during spring in the postsmolt migration corridors was associated with the recruitment pattern of the stock complex (Friedland et al., 2003a, 2003b). The accumulation of additional data on the postsmolt growth response of both stock complexes will contribute to a better understanding of the recruitment process in Atlantic salmon.