998 resultados para Ocean-atmosphere interaction.
Resumo:
In this work, a new theoretical mechanism is presented in which equatorial Rossby and inertio-gravity wave modes may interact with each other through resonance with the diurnal cycle of tropical deep convection. We have adopted the two-layer incompressible equatorial primitive equations forced by a parametric heating that roughly represents deep convection activity in the tropical atmosphere. The heat source was parametrized in the simplest way according to the hypothesis that it is proportional to the lower-troposphere moisture convergence, with the background moisture state function mimicking the structure of the ITCZ. In this context, we have investigated the possibility of resonant interaction between equatorially trapped Rossby and inertio-gravity modes through the diurnal cycle of the background moisture state function. The reduced dynamics of a single resonant duo shows that when this diurnal variation is considered, a Rossby wave mode can undergo significant amplitude modulations when interacting with an inertio-gravity wave mode, which is not possible in the context of the resonant triad non-linear interaction. Therefore, the results suggest that the diurnal variation of the ITCZ can be a possible dynamical mechanism that leads the Rossby waves to be significantly affected by high frequency modes.
Resumo:
In this work, the diurnal evolution of the radiation balance components over the tropical Atlantic Ocean is described and analysed. The analysis is based on measurements carried Out on board a Brazilian Navy ship during the observational campaign of the FluTuA Project (`Fluxos Turbulentos sobre o Atlantico`), from 15 to 23 May 2002. The observations indicated that the albedo responds its expected to atmospheric attenuation effects with a diurnal evolution similar to the Fresnel albedo. In general, the observed longwave radiation values agreed better with the estimated values obtained without longwave reflection. In agreement with the literature, the average surface emissivity was around 0.97. The net radiation, estimated from published equations for albedo, atmospheric transmissivity and surface emissivity, agreed with the observations, indicating that these parameters are representative of the radiometric properties of the air-sea interface in the region between Natal (6 degrees S, 35.2 degrees W) and the Sao Pedro and Sao Paulo Archipelago (1 degrees N, 29.3 degrees W). Copyright (C) 2008 Royal Meteorological Society
Resumo:
Strangelets (hypothetical stable lumps of strange quarkmatter) of astrophysical origin may be ultimately detected in specific cosmic ray experiments. The initial mass distribution resulting from the possible astrophysical production sites would be subject to reprocessing in the interstellar medium and in the earth`s atmosphere. In order to get a better understanding of the claims for the detection of this still hypothetic state of hadronic matter, we present a study of strangelet-nucleus interactions including several physical processes of interest (abrasion, fusion, fission, excitation and de-excitation of the strangelets), to address the fate of the baryon number along the strangelet path. It is shown that, although fusion may be important for low-energy strangelets in the interstellar medium (thus increasing the initial baryon number A), in the earth`s atmosphere the loss of the baryon number should be the dominant process. The consequences of these findings are briefly addressed.
Resumo:
The influence of molecular oxygen in the interactions of emeraldine base form of polyaniline (EB-PANI) with Fe(III) or Cu(II) ions in 1-methyl-2-pyrrolidinone (NMP) solutions has been investigated by UV-vis-NIR, resonance Raman and electron paramagnetic resonance (EPR) spectroscopies. Through the set of spectroscopic results it was possible to rationalize the role Of O(2) and to construct a scheme of preferential routes occurring in the interaction of EB-PANI with Fe(III) or Cu(II). Solutions of 4.0 mmol L(-1) EB-PANI with 0.8, 2.0 and 20 mmol L(-1) Fe(III) or Cu(II) ions in NMP were investigated and the main observed reactions were EB-PANI oxidation to pernigraniline (PB-PANI) and EB-PANI doping process by pseudo-protonation, or by a two-step redox process. In the presence Of O(2), PB-PANI is observed in all Fe(III)/EB solutions and EB-PANI doping only occurs in solutions with high Fe(III) concentrations through pseudo-protonation. On the other hand, emeraldine salt (ES-PANI) is formed in all Fe(III)/EB solutions under N(2) atmosphere and, in this case, doping occurs both by the pseudo-protonation and two-step redox mechanisms. In all Cu(II)/EB solutions PB-PANI is formed both in the presence and absence of O(2), and only for solutions with high Cu(II) concentrations doping process occurs in a very low degree. The most important result from EPR spectra was providing evidence for redox steps. The determined Cu(II) signal areas under oxygen are higher than under N(2) and, further. the initial metal proportions (1:2:20) are maintained in these spectra, indicating that Cu(I) formed are re-oxidized by O(2) and. so, Cu(II) ions are being recycled. Consistently, for the solutions prepared under nitrogen, the corresponding areas and proportions in the spectra are much lower, confirming that a partial reduction of Cu(II) ions actually occurs. (C) 2009 Elsevier B.V. All rights reserved.
Resumo:
In the Tropics, continental shelves governed by western boundary currents are considered to be among the least productive ocean margins in the world, unless eddy-induced shelf-edge upwelling becomes significant. The eastern Brazilian shelf in the Southwest Atlantic is one of these, and since the slight nutrient input from continental sources is extremely oligotrophic. It is characterized by complex bathymetry with the presence of shallow banks and seamounts. In this work, a full three-dimensional nonlinear primitive equation ocean model is used to demonstrate that the interaction of tidal currents and the bottom topography of the east Brazil continental shelf is capable of producing local upwelling of South Atlantic Central Water, bringing nutrients up from deep waters to the surface layer. Such upper layer enrichment is found to be of significance in increasing local primary productivity. (c) 2005 Elsevier Ltd. All rights reserved.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Tin oxide is an n-type semiconductor material with a high covalent behavior. Mass transport in this oxide depends on the surface state promoted by atmosphere or by the solid solution of a non-isovalent oxide doping The sintering and grain growth of this type of oxide powder is then controlled by atmosphere and by extrinsic oxygen vacancy formation. For pure SnO2 powder the surface state depends only on the interaction of atmosphere molecules with the SnO2 surface. Inert atmosphere like argon or helium promotes oxygen vacancy formation at the surface due to reduction of SnO2 to SnO at the surface and liberation of oxygen molecules forming oxygen vacancies. As consequence surface diffusion is enhanced leading to grain coarsening but no densification. Oxygen atmosphere inhibits the SnO2 reduction decreasing the surface oxygen vacancy concentration. Addition of dopants with lower valence at sintering temperature creates extrinsic charged oxygen vacancies that promote mass transport at grain boundary leading to densification and grain growth of this polycrystalline oxide.
Resumo:
Tin oxide is an n type semiconductor material with a high covalent behavior. Mass transport in this oxide depends on the surface state promoted by atmosphere or by the solid solution of aliovalent oxide doping. The sintering and grain growth of this type of oxide powder is then controlled by atmosphere and by extrinsic oxygen vacancy formation. For pure SnO2 powder the surface state depends only on the interaction of atmosphere molecules with the SnO2 surface. Inert atmosphere like argon or helium promotes oxygen vacancy formation at the surface due to reduction of SnO2 to SnO at the surface and liberation of oxygen molecules forming oxygen vacancies. As a consequence surface diffusion is enhanced leading to grain coarsening but no densification. Oxygen atmosphere inhibits SnO2 reduction by decreasing the surface oxygen vacancy concentration. Addition of dopants with lower valence at the sintering temperature creates extrinsic charged oxygen vacancies that promote mass transport at the grain boundary leading to densification and grain growth of this polycrystalline oxide.
Resumo:
The control of post-harvest fungal decay on guava (Psidium guajava L. 'Pedro Sato') stored under low oxygen controlled atmosphere (5 kPa) was compared with increasing concentrations of carbon dioxide in the atmospheres. The combination of high concentrations of carbon dioxide (1, 5, 10, 15 and 20 kPa) with low oxygen (5 kPa) did not result in additional decay control. The low oxygen level (5 kPa) was the main factor for controlling post-harvest fungal development which resulted in a very low percentage of fruits with symptoms of anthracnose and stylar end rot throughout cold storage, regardless of the CO2 concentration. After transfer to ambient conditions, only the atmospheres with 5 kPa O2 (control), 5 kPa O2 + 1 kPa CO2 and 5 kPa O2 + 5 kPa CO2 resulted in reduced incidence of stylar end rot (P<0.05). There was not a significant interaction among CA combinations and storage duration on the percentage and number of typical anthracnose lesions.
Resumo:
To properly describe the interactions between the ocean and atmosphere, it is necessary to assess a variety of time and spatial scales phenomena. Here, high resolution oceanographic and meteorological data collected during an observational campaign carried out aboard a ship in the tropical Atlantic Ocean, on May 15-24, 2002, is used to describe the radiation balance at the ocean interface. Data collected by two PIRATA buoys, along the equator at 23°W and 35°W and satellite and climate data are compared with the data obtained during the observational campaign. Comparison indicates remarkable similarity for daily and hourly values of radiation fluxes components as consequence of the temporal and spatial consistence presented by the air and water temperatures measured in situ and estimated from large scale information. The discrepancy, mainly in the Sao Pedro and Sao Paulo Archipelago area, seems to be associated to the local upwelling of cold water, which is not detected in all other estimates investigated here. More in situ data are necessary to clarify whether this upwelling flow has a larger scale effect and what are the meteorological and oceanographic implications of the local upwelling area on the tropical waters at the Brazilian coast.
Resumo:
The coastal upwelling off Cabo Frio (SE Brazilian coast, SEBC) represents an exception to the world`s oceans since the majority of the upwelling areas are located in eastern boundary current systems. Cabo Frio represents an interesting area for investigation due to its tight physical-biological interaction and the importance of the region as a major fishery area in the SEBC. We analyzed a suite of lipid biomarkers to apportion the main sources of organic matter in surface sediments of the continental shelf off Cabo Frio, comparing the area to non-upwelling regions off the SEBC (shelf break off Cabo Frio and continental shelf off Ubatuba). During spring and summer (the upwelling period), diatoms are probably the major sources of polyunsaturated fatty acids (PUFAs) and C-28 sterols in surface sediments from Cabo Frio continental shelf. Sediments sampled in winter showed, in contrast, lower relative abundance of PUFAs and higher stanol/stenol ratio values. In deeper regions off Cabo Frio, elevated concentrations of alkenones, 24-methylcholest-5,22E-dien-3 beta-ol and 24-ethylcholest-5-en-3 beta-ol during the spring may be produced by prymnesiophytes or cryptophytes and cyanobacteria, respectively. In Ubatuba, the C-27 and C-28 sterols are likely derived from omnivorous salps and nanoflagellates. At non-upwelling areas, despite the increase in biomarker concentrations during spring and summer, lower concentrations of PUFAs, phytol and algal sterols than in shelf areas off Cabo Frio suggest the importance of the upwelling system to the rapid transfer of organic carbon to surface sediments. Our results suggest that spatial and temporal variability in organic matter production and deposition merits consideration for constraining the carbon budgets in the coastal region off Cabo Frio. (C) 2008 Elsevier Ltd. All rights reserved.
Resumo:
The continental margin off SE South America hosts one of the world’s most energetic hydrodynamic regimes but also the second largest drainage system of the continent. Both, the ocean current system as well as the fluvial runoff are strongly controlled by the atmospheric circulation modes over the region. The distribution pattern of particular types of sediments on shelf and slope and the long-term built-up of depositional elements within the overall margin architecture are, thus, the product of both, seasonal to millennial variability as well as long-term environmental trends. This talk presents how the combination of different methodological approaches can be used to obtain a comprehensive picture of the variability of a shelf and upper-slope hydrodynamic system during Holocene times. The particular methods applied are: (a) Margin-wide stratigraphic information to elucidate the role of sea level for the oceanographic and sedimentary systems since the last glacial maximum; (b) Palaeoceanographic sediment proxies combined with palaeo-temperature indicating isotopes of bivalve shells to trace lateral shifts in the coastal oceanography (particularly of the shelf front) during the Holocene; (c) Neodymium isotopes to identify the shelf sediment transport routes resulting from the current regime; (d) Sedimentological/geochemical data to show the efficient mechanism of sand export from the shelf to the open ocean; (e) Diatom assemblages and sediment element distributions indicating palaeo-salinity and the changing marine influence to illustrate the Plata runoff history. Sea level has not only controlled the overall configuration of the shelf but also the position of the main sediment routes from the continent towards the ocean. The shelf front has shifted frequently since the last glacial times probably resulting from both, changes in the Westerly Winds intensity and in the shelf width itself. Remarkable is a southward shift of this front during the past two centuries possibly related to anthropogenic influences on the atmosphere. The oceanographic regime with its prominent hydrographic boundaries led to a clear separation of sedimentary provinces since shelf drowning. It is especially the shelf front which enhances shelf sediment export through a continuous high sand supply to the uppermost slope. Finally, the Plata River does not continuously provide sediment to the shelf but shows significant climate-related changes in discharge during the past centuries. Starting from these findings, three major fields of research should, in general, be further developed in future: (i) The immediate interaction of the hydrodynamic and sedimentary systems to close the gaps between deposit information and modern oceanographic dynamics; (ii) Material budget calculations for the marginal ocean system in terms of material fluxes, storage/retention capacities, and critical thresholds; (iii) The role of human activity on the atmospheric, oceanographic and solid material systems to unravel natural vs. anthropogenic effects and feedback mechanisms
Resumo:
Programa de doctorado de oceanografía
Resumo:
[EN] Here we present results from sediment traps that separate particles as a function of their settling velocity, which were moored in the Canary Current region over a 1.5-year period. This study represents the longest time series using “in situ” particle settling velocity traps to date and are unique in providing year-round estimates. We find that, at least during half of the year in subtropical waters (the largest ocean domain), more than 60% of total particulate organic carbon is contained in slowly settling particles (0.7–11 m d−1). Analyses of organic biomarkers reveal that these particles have the same degradation state, or are even fresher than rapidly sinking particles. Thus, if slowly settling particles dominate the exportable carbon pool, most organic matter would be respired in surface waters, acting as a biological source of CO2 susceptible to exchange with the atmosphere. In the context of climate change, if the predicted changes in phytoplankton community structure occur, slowly settling particles would be favored, affecting the strength of the biological pump in the ocean.
Resumo:
[EN]The increase in the anthropogenic CO2 released to the atmosphere, induces an increase in the dissolved CO2 in the ocean, causing elevated pCO2 values and a pH decrease. Due to the increasing atmospheric CO2, several on-going research programs are evaluating the impact of acidification on marine organisms, intent to predict their future. In this mesocosm experiment (KOSMOS 14GC), we assessed the effect of different CO2 concentrations on metabolism in microplankton (0.7-50μm size) and in biogenic particles harvested by sediment traps.