997 resultados para ORGANIC SEMICONDUCTORS
Resumo:
The main method of modifying properties of semiconductors is to introduce small amount of impurities inside the material. This is used to control magnetic and optical properties of materials and to realize p- and n-type semiconductors out of intrinsic material in order to manufacture fundamental components such as diodes. As diffusion can be described as random mixing of material due to thermal movement of atoms, it is essential to know the diffusion behavior of the impurities in order to manufacture working components. In modified radiotracer technique diffusion is studied using radioactive isotopes of elements as tracers. The technique is called modified as atoms are deployed inside the material by ion beam implantation. With ion implantation, a distinct distribution of impurities can be deployed inside the sample surface with good con- trol over the amount of implanted atoms. As electromagnetic radiation and other nuclear decay products emitted by radioactive materials can be easily detected, only very low amount of impurities can be used. This makes it possible to study diffusion in pure materials without essentially modifying the initial properties by doping. In this thesis a modified radiotracer technique is used to study the diffusion of beryllium in GaN, ZnO, SiGe and glassy carbon. GaN, ZnO and SiGe are of great interest to the semiconductor industry and beryllium as a small and possibly rapid dopant hasn t been studied previously using the technique. Glassy carbon has been added to demonstrate the feasibility of the technique. In addition, the diffusion of magnetic impurities, Mn and Co, has been studied in GaAs and ZnO (respectively) with spintronic applications in mind.
Resumo:
Local mode frequencies due to substitutional impurities in some III–V semiconductors are calculated using Green functions on the mass defect approximation and compared with experimental results.
Resumo:
A new equation for predicting the thermal conductivities of organic liquids using dimension-less analysis is given. The equation (Equation Presented) correlates 51 different liquids tested within 11% average error and 17% standard deviation. A comparison of the proposed equation with the available correlations and its application to some industrially important liquids show that this equation can be safely used to calculate the thermal conductivities at 20°C. and 1 atm. pressure for organic liquids of known molecular weight. Cp and ΔHv - the only two parameters for which experimental values must be known for making use of this equation - can be calculated using other well known correlations. The proposed equation is not applicable to inorganic liquids.
Resumo:
1. The common organic acids inhibited leaf phosphatase activity, This effect is mostly due to the hydroxyl groups in them. 2. The less common organic acids, which have only carboxyl groups, did not show any marked inhibitory action on phosphatase activity. 3. The less common organic acids eluted the leaf phosphatase after adsorption on aluminacγ gel to a greater extent than the more common organic acids. 4. The second elution of the purified enzyme from the aluminacγ gel was not possible with the organic acids as it was adsorbed on the gel.
Resumo:
The addition reactions of alcohols, ROH (R = CH3, C2H5 n-C3H7, i-C3H7 and t-C4H9), to p-bromophenylisothiocyanate show that the rates decrease in the order, CH3OH> C2H5OH> n-C3H7OH> i-C3H7OH> t-C4H9OH, although the basicities of the alcohols vary in the reverse order. The results indicate the greater importance of steric factors as compared with polar factors. Evidence is also presented for the formation of a complex between the isothiocyanate and the alcohol in the first stage of the addition reaction. In the addition of aniline to substituted phenylisothiocyanates the rate data give a satisfactory linear correlation with Hammett σ constants and the results clearly show that electron-withdrawing groups favour the addition reaction. The addition of aniline to alkyl isothiocyanates have been studied in order to find out the nature of alkyl group interaction in these derivatives. Kinetic studies on the addition of substituted anilines to phenylisothiocyanate show that the rate of reaction increases with the electron-donating ability of the substituents on the aniline as also the basicity of the aniline.
Resumo:
Volatile organic compounds (VOCs) are emitted into the atmosphere from natural and anthropogenic sources, vegetation being the dominant source on a global scale. Some of these reactive compounds are deemed major contributors or inhibitors to aerosol particle formation and growth, thus making VOC measurements essential for current climate change research. This thesis discusses ecosystem scale VOC fluxes measured above a boreal Scots pine dominated forest in southern Finland. The flux measurements were performed using the micrometeorological disjunct eddy covariance (DEC) method combined with proton transfer reaction mass spectrometry (PTR-MS), which is an online technique for measuring VOC concentrations. The measurement, calibration, and calculation procedures developed in this work proved to be well suited to long-term VOC concentration and flux measurements with PTR-MS. A new averaging approach based on running averaged covariance functions improved the determination of the lag time between wind and concentration measurements, which is a common challenge in DEC when measuring fluxes near the detection limit. The ecosystem scale emissions of methanol, acetaldehyde, and acetone were substantial. These three oxygenated VOCs made up about half of the total emissions, with the rest comprised of monoterpenes. Contrary to the traditional assumption that monoterpene emissions from Scots pine originate mainly as evaporation from specialized storage pools, the DEC measurements indicated a significant contribution from de novo biosynthesis to the ecosystem scale monoterpene emissions. This thesis offers practical guidelines for long-term DEC measurements with PTR-MS. In particular, the new averaging approach to the lag time determination seems useful in the automation of DEC flux calculations. Seasonal variation in the monoterpene biosynthesis and the detailed structure of a revised hybrid algorithm, describing both de novo and pool emissions, should be determined in further studies to improve biological realism in the modelling of monoterpene emissions from Scots pine forests. The increasing number of DEC measurements of oxygenated VOCs will probably enable better estimates of the role of these compounds in plant physiology and tropospheric chemistry. Keywords: disjunct eddy covariance, lag time determination, long-term flux measurements, proton transfer reaction mass spectrometry, Scots pine forests, volatile organic compounds
Resumo:
The Raman spectra of methyl alcohol, ethyl alcohol, n-propyl alcohol and n-butyl alcohol have been recorded using λ 2537 excitation. 35, 49, 45 and 51 Raman lines respectively have been identified in the spectra of these alcohols, in addition to the rotational 'wings'. In each case, a large number of additional lines have been recorded. The existence of Raman lines with frequency shifts greater than 3800 cm.-1, first reported by Bolla in the spectrum of ethyl alcohol, has been confirmed. Similar high-frequency shift Raman lines have also been recorded in the spectrum of methyl alcohol. They have been assigned as combinations. Proper assignments have been given for the prominent Raman lines appearing in the spectra of these alcohols.
Resumo:
The study of the nutritional requirements of Arthrobacter strain C19d which accumulates alanine in large amounts in the culture medium. 1evealed that the organism needs thiamine for its growth. A Iso the alanine accumulation by this strain was found to be related to thiamine concentration in the medium. The optimum concentration of thiamine for alanine accumulation (20 tJ.g/mJ) Was also optimum for the growth of the organism indicating thereby that alanine accumulation by this strain is a growth associated process rather than far removed from it. Among the various growth promoters tried yeast extract was found to be superior from the point of view of alanine yield and it wa5 also superior to giving thiamine alone in the medium. A concentration of 0.02% yeast extract was found to be optimum for alanine occumulation.
Resumo:
Tiivistelmä: Suomen jokivesien Itämereen kuljettama fosfori ja orgaaninen aine
Resumo:
The crystal structure determination of the anhydrous form of any organic compound has been a challenge because of solvent incorporation during crystallization. A device to grow anhydrous forms of low melting organic solids based on vaporization and condensation by a gradient cooling technique has been designed. Its utility has been evaluated by growing anhydrous forms of ciprofloxacin, midazolam, and ofloxacin. Ciprofloxacin crystallizes in triclinic P (1) over bar, midazolam in monoclinic P2(1)/n, and ofloxacin in the C2/c space group. Comparative studies on the conformational features with solvated structure show no significant variation in the aromatic moieties.
Resumo:
In this work diketopyrrolopyrrole based copolymers (PDPP-BBT and TDPP-BBT) containing a donor-acceptor structural unit have been explored as organic Sensitizers for quasi-solid state dye Sensitized solar cells. Polymer-sensitized solar cells (PSSC) fabricated utilizing PDPP-BBT and TDPP-BBT as the active layer resulted in a typical power conversion efficiency of 1.43% and 2.41%, respectively. The power conversion efficiency of PSSCs based on TDPP-BBT With use of TiCl4-modified TiO2 photoanode was about 3.06%, attributed to the reduced back recombination reaction and more charge carriers in the external Circuit.