963 resultados para OPHTHALMIC SOLUTION 1-PERCENT
Resumo:
A detailed NMR (¹H , COSY, ROESY) spectroscopic study of complexation of enalapril maleate with beta-cyclodextrin was carried out. The ¹H NMR spectrum of enalapril maleate confirmed the existence of cis-trans equilibrium in solution, possibly due to hindered rotation along the amide bond. The cis-trans ratio remained almost the same in the presence of beta-cyclodextrin but in one case it was found significantly different which suggests a catalytic role of beta-cyclodextrin in the isomerization. ¹H NMR titration studies confirmed the formation of an enalapril-beta-cyclodextrin inclusion complex as evidenced by chemical shift variations in the proton resonances of both the host and the guest. The stoichiometry of the complex was determined to be 2:1 (guest: host). The mode of penetration of the guest into the beta-cyclodextrin cavity as well as the structure of the complex were established using ROESY spectroscopy.
Resumo:
Rate constants for the quenching of 1,3-indandione (1) triplet by olefins and by hydrogen and electron donors were obtained employing the laser flash photolysis technique in benzene solution. These rate constants ranged from 2.5x10(5) Lmol-1s-1 (for 2-propanol) to 5.9x10(9) Lmol-1s-1 (for DABCO). From the quenching rate constants by 1,3-cyclohexadiene, trans- and cis-stilbene a value between 49.3 and 52.4 kcal/mol was estimated for the energy of the triplet state of 1,3-indandione. The npi* character of this triplet state was evidenced by the quenching rate constants obtained when typical hydrogen donors were employed as quenchers. For 2-phenyl-1,3-indandione (2, R=phenyl) a fast Norrish type I reaction is operating which prevents the determination of kinetic and spectroscopic data of its triplet state.
Resumo:
Capillary electrophoresis has become a well-established and routine-based separation technique. It is based on the differences between charged analyte mobility in aqueous or organic electrolytes. Its major limitation is the sensitivity due to small sample injection volumes and the narrow diameter of the capillaries, especially when UV detection is used. There are a number of ways to increase the concentration sensitivity. This report shows some on-line preconcentration strategies to perform it in free solution capillary electrophoresis that are based on manipulation of the analyte electrophoretic velocity during the sample introduction (stacking, field amplification and transient isotachophoresis).
Resumo:
Densities of glycine in aqueous solutions of ionic liquid 1-butyl-3-methylimidazolium tetrafluoroborate were determined at temperatures ranging from 283.15 to 313.15 K. The apparent molar volume, infinite dilution apparent molar volume, second derivative of the infinite dilution partial molar volume with respect to temperature, partial molar volume of transfer at infinite dilution, and the number of hydration were determined. It was found that the apparent molar volume at infinite dilution was positive, but decreased with increasing ionic liquid concentration and increased with increasing temperature. On the other hand, the partial molar volume of transfer at infinite dilution behaved in a similar manner, but was negative.
Resumo:
The stability constants of the 1:1 complexes formed between M2+ (M2+: Mn2+, Ni2+, Cu2+, or Cd2+) and BMADA2- (BMADA: 2,2'-(5-bromo-6-methylpyrimidine-2,4 diyl)bis(azanediyl)dipropanoic acid) were determined by potentiometric pH titration in aqueous solution (I = 0.1 mol L-1, NaNO3, 25 °C). The stability of the binary M - BMADA complexes is determined by the basicity of the carboxyl or amino groups. All the stability constants reported in this work exhibit the usual trend, and the order obtained was Mn2+< Ni2+ < Cu2+ > Cd2+. The observed stability order for BMADA approximately follows the Irving - Williams sequence. In the M - BMADA complexes, the M ion is able to form a macrochelate via the pyrimidine group of BMADA.
Resumo:
In this research, scanometry was used as a new, simple, fast and inexpensive method for a colorimetric determination of Mn2+ ion in water samples and thermocouple wire through the use of periodate reagent in an acidic medium. The results showed the oxidization of colorless Mn2+ ion by periodate and the formation of a purplish MnO4- ion. The system had a linear range of 1.0 to 70.0 µg mL-1 Mn2+ ion with a detection limit of 0.314 µg mL-1 and a relative standard deviation of 2.77% for G color value. This method has the capability to determine low levels of Mn2+ ion in thermocouple wire and water samples.
Resumo:
The electrochemical oxidation of lambdacyhalotrin in a triton X-100 water solution on a PbO2-Bi electrode has been studied. It was discovered that electrocatalytic degradation proceeded through the Langmuir-Hinshelwood (L-H) mechanism. The Langmuir adsorption equilibrium constant of the organic compound on the PbO2-Bi surface (0.67 (±0.02) mg-1L) and the L-H maximum reaction rate for lambdacyhalotrin oxidation (0.040 (±0.002) mg L-1 min-1) was also determined on the basis of kinetic data. Oxidation/mineralization was tested at electrode potential higher than 2.3 V vs. Ag/AgCl, in this conditions the higher degradation percent of 85 (±4) % has been obtained.
Resumo:
The hybrid 3-(1,4-phenylenediamine)propylsilica xerogel was obtained starting from two different organic precursor quantity (5 and 8 mmol) to 22 mmol of TEOS, in the synthesis. The xerogel samples were characterized by using CHN elemental analysis, N2 adsorption-desorption isotherms, infrared thermal analysis. The xerogel was used as metal sorbent for Cu2+, Cd2+ and Pb2+ in aqueous solution with concentration range of 10-3 to 10-5 mmol l-1. The quantity of organic precursor added in the synthesis influences the characteristics of the xerogel as morphology and thermal stability, as well as the metal adsorption capacity.
Resumo:
The water soluble material, 3-n-propyl-1-azonia-4-azabicyclo[2.2.2]octanechloride silsesquioxane (dabcosil silsesquioxane) was obtained. The dabcosil silsesquioxane was grafted onto a silica surface, previously modified with aluminum oxide. The resulting solid, dabcosil-Al/SiO2, presents 0.15 mmol of dabco groups per gram of material. The product of the grafting reaction was analyzed by infrared spectroscopy and N2 adsorption-desorption isotherms. The dabcosil-Al/SiO2 material was used as sorbent for chromium (VI) adsorption in aqueous solution.
Resumo:
The pollution and toxicity problems posed by arsenic in the environment have long been established. Hence, the removal and recovery remedies have been sought, bearing in mind the efficiency, cost effectiveness and environmental friendliness of the methods employed. The sorption kinetics and intraparticulate diffusivity of As (III) bioremediation from aqueous solution using modified and unmodified coconut fiber was investigated. The amount adsorbed increased as time increased, reaching equilibrium at about 60 minutes. The kinetic studies showed that the sorption rates could be described by both pseudo-first order and pseudo-second order process with the later showing a better fit with a value of rate constant of 1.16 x 10-4 min-1 for the three adsorbent types. The mechanism of sorption was found to be particle diffusion controlled. The diffusion and boundary layer effects were also investigation. Therefore, the results show that coconut fiber, both modified and unmodified is an efficient sorbent for the removal of As (III) from industrial effluents with particle diffusion as the predominant mechanism.
Resumo:
An activated carbon was obtained by chemical activation with phosphoric acid, CM, from a mineral carbon. Afterwards, the carbon was modified with 2 and 5 molL-1, CMox2 and CMox5 nitric acid solutions to increase the surface acid group contents. Immersion enthalpy at pH 4 values and Pb2+ adsorption isotherms were determined by immersing activated carbons in aqueous solution. The surface area values of the adsorbents and total pore volume were approximately 560 m².g-1 and 0.36 cm³g-1, respectively. As regards chemical characteristics, activated carbons had higher acid sites content, 0.92-2.42 meq g-1, than basic sites, 0.63-0.12 meq g-1. pH values were between 7.4 and 4.5 at the point of zero charge, pH PZC. The adsorbed quantity of Pb2+ and the immersion enthalpy in solution of different pH values for CM activated carbon showed that the values are the highest for pH 4, 15.7 mgg-1 and 27.6 Jg-1 respectively. Pb2+ adsorption isotherms and immersion enthalpy were determined for modified activated carbons and the highest values were obtained for the activated carbon that showed the highest content of total acid sites on the surface.
Resumo:
The need to clean-up heavy metal contaminated environment can not be over emphasized. This paper describes the adsorption isotherm studies of Cd (II), Pb (II) and Zn (II) ions from aqueous solution using unmodified and EDTA-modified maize cob. Maize cob was found to be an excellent adsorbent for the removal of these metal ions. The amount of metal ions adsorbed increased as the initial concentration increased. Also, EDTA - modification enhanced the adsorption capacity of maize cob probably due to the chelating ability of EDTA. Among the three adsorption isotherm tested, Dubinin-Radushkevich gave the best fit with R² value ranging from 0.9539 to 0.9973 and an average value of 0.9819. This is followed by Freundlich isotherm (Ave. 0.9783) and then the Langmuir isotherm (Ave. 0.7637). The sorption process was found to be a physiosorption process as seen from the apparent energy of adsorption which ranged from 2.05KJ\mol to 4.56KJ\mol. Therefore, this study demonstrates that maize cob which is an environmental pollutant could be used to adsorb heavy metals and achieve cleanliness thereby abating environmental nuisance caused by the maize cob.
Resumo:
Two series of alkanediyl-a,w-bis (dimethylalkylammonium bromide (n-2-n and n-6-n; n=8, 10,12, and 16) have been synthesized and their micelles properties studied in aqueous solution using pyrene, pyrenecarboxaldehyde (PCA) and 1,8 anilinonaphtalene sulfonic acid sodium salt (ANS) as fluorescent probes. The micelles from these surfactants have been characterized on the basis of the information provided by micelle-solubilized fluorescent probes. The obtained results indicated that the surfactant concentration at which a marked decrease in l max parameter of pyrenecarboxaldehyde (PCA) occurs corresponds to the CMC determined by conductimetric measurements. Changes in the emission spectra of ANS and PCA observed in the submicellar range for both surfactants series (n-2-n and n-6-n) were interpreted as formation of pre-aggregates. It was found that the dimeric surfactants with long spacer (s= 6) form more hydrated aggregates when compared with those formed by the n-2-n and CnTAB surfactants series. This was attributed to a more difficult packing of n-6-n surfactant molecules to form micelles.
Resumo:
The structural and electronic properties of 1-(5-Hydroxymethyl - 4 -[ 5 - (5-oxo-5-piperidin- 1 -yl-penta- 1,3 -dienyl)-benzo [1,3] dioxol- 2 -yl]-tetrahydro -furan-2 -yl)-5-methy l-1Hpyrimidine-2,4dione (AHE) molecule have been investigated theoretically by performing density functional theory (DFT), and semi empirical molecular orbital calculations. The geometry of the molecule is optimized at the level of Austin Model 1 (AM1), and the electronic properties and relative energies of the molecules have been calculated by density functional theory in the ground state. The resultant dipole moment of the AHE molecule is about 2.6 and 2.3 Debyes by AM1 and DFT methods respectively, This property of AHE makes it an active molecule with its environment, that is AHE molecule may interacts with its environment strongly in solution.
Resumo:
A procedure for separation and preconcentration of trace amounts of Zn(II) from aqueous media is proposed. The procedure is based on the adsorption of Zn2+ on octadecyl bonded silica membrane disk modified with N,N'-disalicylidene-1,2-phenylendiamine at pH 7. The retained zinc ions were then stripped from the disk with a minimal amount of 1.5 mol L-1 hydrochloric acid solution as eluent, and determined by flame atomic absorption spectrometry. Maximum capacity of the membrane disk modified with 5 mg of the ligand was found to be 226 µg Zn2+. The relative standard deviation of zinc for ten replicate extraction of 10 µg zinc from 1000 mL samples was 1.2%. The limit of detection of the proposed method was 14 ng of Zn2+ per 1000 mL. The method was successfully applied to the determination of zinc in natural water samples and accuracy was examined by recovery experiments and independent analysis by graphite furnace atomic absorption spectrometry (GFAAS).