767 resultados para Nonisothermal curing
Resumo:
The vitrification and devitrification features of lead fluoride are investigated by means of molecular dynamic simulations. The influence of heating rate on the devitrification temperature as well as the dependence of the glass properties on its thermal history, i.e., the cooling rate employed, is identified. As expected, different glasses are obtained when the cooling rates differ. Diffusion coefficient analysis during heating of glass and crystal, indicates that the presence of defects on the glassy matrix favors the transition processes from the ionic to a superionic state, with high mobility of fluorine atoms, responsible for the high anionic conduction of lead fluoride. Nonisothermal and isothermal devitrification processes are simulated in glasses obtained at different cooling rates and structural organizations occurring during the heat treatments are clearly observed. When a fast cooling rate is employed during the glass formation, the devitrification of a single crystal (limited by the cell dimensions) is observed, while the glass obtained with slower cooling rate, allowing relaxations and organization of various regions on the glass bulk during the cooling process, devitrifies in more than one crystalline plane. (C) 2004 American Institute of Physics.
Resumo:
Two different carbon/epoxy prepreg materials were characterized and compared using thermal (DSC, TGA, and DMA) and rheological analyses. A prepreg system (carbon fiber preimpregnated with epoxy resin F584) that is currently used in the commercial airplane industry was compared with a prepreg system that is a prospective candidate for the same applications (carbon fiber prepreg/epoxy resin 8552). The differences in the curing kinetics mechanisms of both prepreg systems were identified through the DSC, TGA, DMA, and rheological analyses. Based on these thermal analysis techniques, it was verified that the curing of both epoxy resin systems follow a cure kinetic of n order. Even though their reaction heats were found to be slightly different, the kinetics of these systems were nevertheless very similar. The activation energies for both prepreg systems were determined by DSC analysis, using Arrhenius's method, and were found to be quite similar. DMA measurements of the cured prepregs demonstrated that they exhibited similar degrees of cure and different glass transition temperatures. Furthermore, the use of the rheological analysis revealed small differences in the gel temperatures of the two prepreg systems that were examined.
Resumo:
Purpose: To assess the effect of the composite surface conditioning on the microtensile bond strength of a resin cement to a composite used for inlay/onlay restorations.Materials and Methods: Forty-two blocks (6 x 6 x 4 mm) of a microfilled composite (Vita VMLC) were produced and divided into 3 groups (N = 14) by composite surface conditioning methods: Gr1 - etching with 37% phosphoric acid, washing, drying, silanization; Gr2 - air abrasion with 50-Im Al203 particles, silanization; Gr3 - chairside tribochemiCal silica coating (CoJet System), silanization. Single-Bond (one-step adhesive) was applied on the conditioned surfaces and the two resin blocks treated with the same method were cemented using RelyX ARC (dual-curing resin cement). The specimens were stored for 7 days in water at 37 degrees C and then sectioned to produce nontrimmed beam samples, which were submitted to microtensile bond strength testing (mu TBS). For statistical analysis (one-way ANOVA and Tukey's test, = 0.05), the means of the beam samples from each luted specimen were calculated (n = 7).Results: mu TBS values (MPa) of Gr2 (62.0 +/- 3.9a) and Gr3 (60.5 +/- 7.9a) were statistically similar to each other and higher than Gr1 (38.2 +/- 8.9b). The analysis of the fractured surfaces revealed that all failures occurred at the adhesive zone.Conclusion: Conditioning methods with 50-Im Al203 or tribochemical silica coating allowed bonding between resin and composite that was statistically similar and stronger than conditioning with acid etching.
Resumo:
Dielectric thermal analysis has been proved as a valuable tool for monitoring the epoxy curing process and the related rheological properties in the fabrication of polymer-matrix composite materials. This technique also has the potential to be applied in the monitoring of magnet impregnation processes as well as in quality control. In this work we present the quantitative evaluation of the viscosity changing and the curing kinetics for a commercial Stycast epoxy resin system at different temperatures through the impedance analysis. The results showed correlation between the real component of the complex impedance and the isothermal reaction extent. Comparing the dielectric analysis result with the viscosity measured by rotational rheometer we observed a similar behavior reported for dynamic mechanic analysis. The results comparison have shown that the kinetics parameters obtained from DSC and DETA analysis showed different sensitivities related to the characteristics of curing stages. We concluded that the dielectric thermal analysis should be applied in quantitative evaluation of cure kinetics.
Resumo:
In this work molecular dynamics simulations were performed to reproduce the kinetic and thermodynamic transformations occurring during melt crystallization, vitrification, and glass crystallization (devitrification) of PbF2. Two potential parameters were analyzed in order to access the possibility of modeling these properties. These interionic potentials are models developed to describe specific characteristic of PbF2, and thermodynamic properties were well reproduced by one of them, while the other proved well adapted to simulate the crystalline structure of this fluoride. By a modeled nonisothermal heat treatment of the glass, it was shown that the devitrification of a cubic structure in which the Pb-Pb distances are in good agreement with theory and experiment. (C) 2002 American Institute of Physics.
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
It was evaluated the Vickers hardness of five high-copper casting alloys, in their original package form and after casting, according to the casting method used. That way, ten ingots, supplied by the manufacturers of each alloy, were included in self-curing acrylic resin, polished, numerated and submitted to Vickers hardness test at load of 200 g during 30 seconds. Afterwards the numerated ingots were removed from the acrylic resin and five of those were cast in an electrical casting machine and the other five in a centrifugal casting machine with an air/gas torch. The specimens obtained were included in self-curing acrylic resin, polished and submitted to Vickers hardness test. As a result it was verified that there is a variation of hardness among the alloys tested, and the use of the electrical casting machine produced lower hardness values than those produced when used the centrifugal casting machine with an air/gas torch. Also, there is a decrease of hardness of the cast alloys when they are tested in their original form and after casting.
Resumo:
Purpose: To evaluate the influence of three different adhesives, each used as an intermediary layer, on microleakage of sealants applied under condition of salivary contamination. Materials and Methods: Six different experimental conditions were compared, 3 with adhesives and 3 without. After prophylaxis and acid etching of enamel, salivary contamination was placed for 10 s. In Group SC the sealant was applied after saliva without bonding agent and then light-cured. In Group SCA, after saliva, the surface was air dried, and then the sealant was applied and cured. In Groups ScB, SB and PB, a bonding agent (Scotchbond Dual Cure/3M, Single Bond/3M and Prime & Bond 2.1/Dentsply, respectively) was applied after the saliva and prior to the sealant application and curing. After storage in distilled water at 37°C for 24 hrs, the teeth were submitted to 500 thermal cycles (5°C and 55°C), and silver nitrate was used as a leakage tracer. Leakage data were collected on cross sections as percentage of total enamel-sealant interface length. Representative samples were evaluated under SEM. Results: Sealants placed on contaminated enamel with no bonding agent showed extensive microleakage (94.27% in SC; 42.65% in SCA). The SEM revealed gaps as wide as 20 μm in areas where silver nitrate leakage could be visualized. In contrast, all bonding agent groups showed leakage less than 6.9%. Placement of sealant with a dentin-bonding agent on contaminated enamel significantly reduced microleakage (P< 0.0001). The use of a bonding agent as an intermediary layer between enamel and sealant significantly reduced saliva's effect on sealant microleakage.
Resumo:
Biomass consumption and carbon release rates during the process of forest clearing by fire in five test plots are presented and discussed. The experiments were conducted at the Caiabi Farm near the town of Alta Floresta, state of Mato Grosso, Brazil, in five square plots of 1 ha each designated A, B, C, D, and E, with different locations and timing of fire. Plot A was located in the interface with a pasture, with three edges bordering on the forest, and was cut and burned in 1997. Plots B,C, D, and E were located inside the forest. Plot B was cut and burned in 1997. Plot C was inside a deforested 9-ha area, which was cut and burned in 1998. Plot D was inside a deforested 4-ha area, which was cut in 1998 and burned in 1999. Plot E was inside a deforested 4-ha area which was cut and burned in 1999. Biomass consumption was 22.7%, 19.5%, 47.5%, 61.5% and 41.8%, for A, B, C, D, and E, respectively. The effects of an extended curing period and of increasing the deforested area surrounding the plots could be clearly observed. The consumption for areas cut and burned during the same year, tended toward a value of nearly 50% when presented as a function of the total area burned. The aboveground biomass of the test site and the amount of carbon before the fire were 496 Mg ha-1 and 138 Mg ha-1, respectively. Considering that the biomass that remains unburned keeps about the same average carbon content of fresh biomass, which is supported by the fact that the unburned material consists mainly of large logs and considering the value of 50% for consumption, the amount of carbon released to the atmosphere as gases was 69 Mg ha-1. The amounts of CO2 and CO released to the atmosphere by the burning process were then estimated as 228 Mg ha-1 and 15.9 Mg ha-1, respectively. Observations on fire propagation and general features of the slash burnings in the test areas complete the paper. Copyright 2001 by the American Geophysical Union.
Resumo:
This study investigated the effect of different microwave curing cycles on the changes in occlusal vertical dimension of complete dentures. Four test groups with 12 maxillary dentures each were evaluated. Groups 1, 2 and 3 were polymerized with different cycles by microwave radiation and Group 4 was the control and cured by water bath. The average pin opening for all groups was less than 0.5 mm. There was no significant difference between the groups polymerized by the microwave method and the control group. However, analyses of the vertical dimension changes showed statistically significant differences between groups 2 (0.276 +/- 0.141 mm) and 3 (0.496 +/- 0.220 mm).
Resumo:
Microwave energy has been used as an alternative method for disinfection and sterilization of dental prostheses. This study evaluated the influence of microwave treatment on dimensional accuracy along the posterior palatal border of maxillary acrylic resin denture bases processed by water-bath curing. Thirty maxillary acrylic bases (3-mm-thick) were made on cast models with Clássico acrylic resin using routine technique. After polymerization and cooling, the sets were deflasked and the bases were stored in water for 30 days. Thereafter, the specimens were assigned to 3 groups (n=10), as follows: group I (control) was not submitted to any disinfection cycle; group II was submitted to microwave disinfection for 3 min at 500 W; and in group III microwaving was done for 10 min at 604 W. The acrylic bases were fixed on their respective casts with instant adhesive (Super Bonder®) and the base/cast sets were sectioned transversally in the posterior palatal zone. The existence of gaps between the casts and acrylic bases was assessed using a profile projector at 5 points. No statistically significant differences were observed between the control group and group II. However, group III differed statistically from the others (p<0.05). Treatment in microwave oven at 604 W for 10 min produced the greatest discrepancies in the adaptation of maxillary acrylic resin denture bases to the stone casts.
Resumo:
Carbon/epoxy 8552 prepreg is a thermoplastic toughened high-performance epoxy being used in the manufacture of advanced army material. Understanding the cure behavior of a thermosetting system is essential in the development and optimization of composite fabrication processes. The cure kinetics and rheological behavior were evaluated using a differential scanning calorimetry (DSC), dynamic mechanical analysis (DMA) and a rheometer. Values of the kinetic parameters were obtained from dynamic DSC scans using an nth order reaction model. Rheological measurements as a function of temperature and time were made for the prepreg system. The manufacturer's recommended cure cycle was evaluated and considered adequate to consolidated the studied system.
Resumo:
Purpose: To assess the effect of the composite surface conditioning on the microtensile bond strength of a resin cement to a composite used for inlay/onlay restorations. Materials and Methods: Forty-two blocks (6 × 6 × 4 mm) of a microfilled composite (Vita VMLC) were produced and divided into 3 groups (N = 14) by composite surface conditioning methods: Gr1 - etching with 37% phosphoric acid, washing, drying, silanization; Gr2 - air abrasion with 50-l̀m Al2O3 particles, silanization; Gr3 - chairside tribochemical silica coating (CoJet System), silanization. Single-Bond (one-step adhesive) was applied on the conditioned surfaces and the two resin blocks treated with the same method were cemented using RelyX ARC (dual-curing resin cement). The specimens were stored for 7 days in water at 37°C and then sectioned to produce nontrimmed beam samples, which were submitted to microtensile bond strength testing (μTBS). For statistical analysis (one-way ANOVA and Tukey's test, · = 0.05), the means of the beam samples from each luted specimen were calculated (n = 7). Results: μTBS values (MPa) of Gr2 (62.0 ± 3.9a) and Gr3 (60.5 ± 7.9a) were statistically similar to each other and higher than Gr1 (38.2 ± 8.9b). The analysis of the fractured surfaces revealed that all failures occurred at the adhesive zone. Conclusion: Conditioning methods with 50-l̀m Al2O3 or tribochemical silica coating allowed bonding between resin and composite that was statistically similar and stronger than conditioning with acid etching.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
The aim of this study was to evaluate the effect of radiotherapy on the radiopacity and flexural strength of composite resin. Forty Z250 composite resin specimens were polymerized using a halogen light-curing unit and divided into 5 groups, in accordance with the radiotherapy dose: G1- without irradiation, G2- 30 Gy, G3- 40 Gy, G4- 50 Gy and GS- 60 Gy Digital images were obtained using a GE 100 X-ray. Radiopacity values were obtained with the Digora digital imaging system and the flexural strength was evaluated with an EMIC universal testing machine. Data were submitted to ANOVA and Tukey 's test. G1 presented the highest radiopacity value, followed by G3, G5, G4 and G2. For flexural strength, G1 presented the lowest value, followed by G2, G5, G3 and G4. Differences were no significant (p>0.05). The commonly used dosage of radiotherapy treatment, did not cause alteration in the radiopacity and flexural strength of resin-based composites.