971 resultados para Non-linear Response


Relevância:

90.00% 90.00%

Publicador:

Resumo:

Associative memory networks such as Radial Basis Functions, Neurofuzzy and Fuzzy Logic used for modelling nonlinear processes suffer from the curse of dimensionality (COD), in that as the input dimension increases the parameterization, computation cost, training data requirements, etc. increase exponentially. Here a new algorithm is introduced for the construction of a Delaunay input space partitioned optimal piecewise locally linear models to overcome the COD as well as generate locally linear models directly amenable to linear control and estimation algorithms. The training of the model is configured as a new mixture of experts network with a new fast decision rule derived using convex set theory. A very fast simulated reannealing (VFSR) algorithm is utilized to search a global optimal solution of the Delaunay input space partition. A benchmark non-linear time series is used to demonstrate the new approach.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

This paper shows that a wavelet network and a linear term can be advantageously combined for the purpose of non linear system identification. The theoretical foundation of this approach is laid by proving that radial wavelets are orthogonal to linear functions. A constructive procedure for building such nonlinear regression structures, termed linear-wavelet models, is described. For illustration, sim ulation data are used to identify a model for a two-link robotic manipulator. The results show that the introduction of wavelets does improve the prediction ability of a linear model.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Road transport and shipping are copious sources of aerosols, which exert a 9 significant radiative forcing, compared to, for example, the CO2 emitted by these sectors. An 10 advanced atmospheric general circulation model, coupled to a mixed-layer ocean, is used to 11 calculate the climate response to the direct radiative forcing from such aerosols. The cases 12 considered include imposed distributions of black carbon and sulphate aerosols from road 13 transport, and sulphate aerosols from shipping; these are compared to the climate response 14 due to CO2 increases. The difficulties in calculating the climate response due to small 15 forcings are discussed, as the actual forcings have to be scaled by large amounts to enable a 16 climate response to be easily detected. Despite the much greater geographical inhomogeneity 17 in the sulphate forcing, the patterns of zonal and annual-mean surface temperature response 18 (although opposite in sign) closely resembles that resulting from homogeneous changes in 19 CO2. The surface temperature response to black carbon aerosols from road transport is shown 20 to be notably non-linear in scaling applied, probably due to the semi-direct response of clouds 21 to these aerosols. For the aerosol forcings considered here, the most widespread method of 22 calculating radiative forcing significantly overestimates their effect, relative to CO2, 23 compared to surface temperature changes calculated using the climate model.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

ABSTRACT Non-Gaussian/non-linear data assimilation is becoming an increasingly important area of research in the Geosciences as the resolution and non-linearity of models are increased and more and more non-linear observation operators are being used. In this study, we look at the effect of relaxing the assumption of a Gaussian prior on the impact of observations within the data assimilation system. Three different measures of observation impact are studied: the sensitivity of the posterior mean to the observations, mutual information and relative entropy. The sensitivity of the posterior mean is derived analytically when the prior is modelled by a simplified Gaussian mixture and the observation errors are Gaussian. It is found that the sensitivity is a strong function of the value of the observation and proportional to the posterior variance. Similarly, relative entropy is found to be a strong function of the value of the observation. However, the errors in estimating these two measures using a Gaussian approximation to the prior can differ significantly. This hampers conclusions about the effect of the non-Gaussian prior on observation impact. Mutual information does not depend on the value of the observation and is seen to be close to its Gaussian approximation. These findings are illustrated with the particle filter applied to the Lorenz ’63 system. This article is concluded with a discussion of the appropriateness of these measures of observation impact for different situations.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Metrics are often used to compare the climate impacts of emissions from various sources, sectors or nations. These are usually based on global-mean input, and so there is the potential that important information on smaller scales is lost. Assuming a non-linear dependence of the climate impact on local surface temperature change, we explore the loss of information about regional variability that results from using global-mean input in the specific case of heterogeneous changes in ozone, methane and aerosol concentrations resulting from emissions from road traffic, aviation and shipping. Results from equilibrium simulations with two general circulation models are used. An alternative metric for capturing the regional climate impacts is investigated. We find that the application of a metric that is first calculated locally and then averaged globally captures a more complete and informative signal of climate impact than one that uses global-mean input. The loss of information when heterogeneity is ignored is largest in the case of aviation. Further investigation of the spatial distribution of temperature change indicates that although the pattern of temperature response does not closely match the pattern of the forcing, the forcing pattern still influences the response pattern on a hemispheric scale. When the short-lived transport forcing is superimposed on present-day anthropogenic CO2 forcing, the heterogeneity in the temperature response to CO2 dominates. This suggests that the importance of including regional climate impacts in global metrics depends on whether small sectors are considered in isolation or as part of the overall climate change.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

The development of effective environmental management plans and policies requires a sound understanding of the driving forces involved in shaping and altering the structure and function of ecosystems. However, driving forces, especially anthropogenic ones, are defined and operate at multiple administrative levels, which do not always match ecological scales. This paper presents an innovative methodology of analysing drivers of change by developing a typology of scale sensitivity of drivers that classifies and describes the way they operate across multiple administrative levels. Scale sensitivity varies considerably among drivers, which can be classified into five broad categories depending on the response of ‘evenness’ and ‘intensity change’ when moving across administrative levels. Indirect drivers tend to show low scale sensitivity, whereas direct drivers show high scale sensitivity, as they operate in a non-linear way across the administrative scale. Thus policies addressing direct drivers of change, in particular, need to take scale into consideration during their formulation. Moreover, such policies must have a strong spatial focus, which can be achieved either by encouraging local–regional policy making or by introducing high flexibility in (inter)national policies to accommodate increased differentiation at lower administrative levels. High quality data is available for several drivers, however, the availability of consistent data at all levels for non-anthropogenic drivers is a major constraint to mapping and assessing their scale sensitivity. This lack of data may hinder effective policy making for environmental management, since it restricts the ability to fully account for scale sensitivity of natural drivers in policy design.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Both historical and idealized climate model experiments are performed with a variety of Earth system models of intermediate complexity (EMICs) as part of a community contribution to the Intergovernmental Panel on Climate Change Fifth Assessment Report. Historical simulations start at 850 CE and continue through to 2005. The standard simulations include changes in forcing from solar luminosity, Earth's orbital configuration, CO2, additional greenhouse gases, land use, and sulphate and volcanic aerosols. In spite of very different modelled pre-industrial global surface air temperatures, overall 20th century trends in surface air temperature and carbon uptake are reasonably well simulated when compared to observed trends. Land carbon fluxes show much more variation between models than ocean carbon fluxes, and recent land fluxes appear to be slightly underestimated. It is possible that recent modelled climate trends or climate–carbon feedbacks are overestimated resulting in too much land carbon loss or that carbon uptake due to CO2 and/or nitrogen fertilization is underestimated. Several one thousand year long, idealized, 2 × and 4 × CO2 experiments are used to quantify standard model characteristics, including transient and equilibrium climate sensitivities, and climate–carbon feedbacks. The values from EMICs generally fall within the range given by general circulation models. Seven additional historical simulations, each including a single specified forcing, are used to assess the contributions of different climate forcings to the overall climate and carbon cycle response. The response of surface air temperature is the linear sum of the individual forcings, while the carbon cycle response shows a non-linear interaction between land-use change and CO2 forcings for some models. Finally, the preindustrial portions of the last millennium simulations are used to assess historical model carbon-climate feedbacks. Given the specified forcing, there is a tendency for the EMICs to underestimate the drop in surface air temperature and CO2 between the Medieval Climate Anomaly and the Little Ice Age estimated from palaeoclimate reconstructions. This in turn could be a result of unforced variability within the climate system, uncertainty in the reconstructions of temperature and CO2, errors in the reconstructions of forcing used to drive the models, or the incomplete representation of certain processes within the models. Given the forcing datasets used in this study, the models calculate significant land-use emissions over the pre-industrial period. This implies that land-use emissions might need to be taken into account, when making estimates of climate–carbon feedbacks from palaeoclimate reconstructions.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

The development of effective environmental management plans and policies requires a sound understanding of the driving forces involved in shaping and altering the structure and function of ecosystems. However, driving forces, especially anthropogenic ones, are defined and operate at multiple administrative levels, which do not always match ecological scales. This paper presents an innovative methodology of analysing drivers of change by developing a typology of scale sensitivity of drivers that classifies and describes the way they operate across multiple administrative levels. Scale sensitivity varies considerably among drivers, which can be classified into five broad categories depending on the response of ‘evenness’ and ‘intensity change’ when moving across administrative levels. Indirect drivers tend to show low scale sensitivity, whereas direct drivers show high scale sensitivity, as they operate in a non-linear way across the administrative scale. Thus policies addressing direct drivers of change, in particular, need to take scale into consideration during their formulation. Moreover, such policies must have a strong spatial focus, which can be achieved either by encouraging local–regional policy making or by introducing high flexibility in (inter)national policies to accommodate increased differentiation at lower administrative levels. High quality data is available for several drivers, however, the availability of consistent data at all levels for non-anthropogenic drivers is a major constraint to mapping and assessing their scale sensitivity. This lack of data may hinder effective policy making for environmental management, since it restricts the ability to fully account for scale sensitivity of natural drivers in policy design.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Global wetlands are believed to be climate sensitive, and are the largest natural emitters of methane (CH4). Increased wetland CH4 emissions could act as a positive feedback to future warming. The Wetland and Wetland CH4 Inter-comparison of Models Project (WETCHIMP) investigated our present ability to simulate large-scale wetland characteristics and corresponding CH4 emissions. To ensure inter-comparability, we used a common experimental protocol driving all models with the same climate and carbon dioxide (CO2) forcing datasets. The WETCHIMP experiments were conducted for model equilibrium states as well as transient simulations covering the last century. Sensitivity experiments investigated model response to changes in selected forcing inputs (precipitation, temperature, and atmospheric CO2 concentration). Ten models participated, covering the spectrum from simple to relatively complex, including models tailored either for regional or global simulations. The models also varied in methods to calculate wetland size and location, with some models simulating wetland area prognostically, while other models relied on remotely sensed inundation datasets, or an approach intermediate between the two. Four major conclusions emerged from the project. First, the suite of models demonstrate extensive disagreement in their simulations of wetland areal extent and CH4 emissions, in both space and time. Simple metrics of wetland area, such as the latitudinal gradient, show large variability, principally between models that use inundation dataset information and those that independently determine wetland area. Agreement between the models improves for zonally summed CH4 emissions, but large variation between the models remains. For annual global CH4 emissions, the models vary by ±40% of the all-model mean (190 Tg CH4 yr−1). Second, all models show a strong positive response to increased atmospheric CO2 concentrations (857 ppm) in both CH4 emissions and wetland area. In response to increasing global temperatures (+3.4 °C globally spatially uniform), on average, the models decreased wetland area and CH4 fluxes, primarily in the tropics, but the magnitude and sign of the response varied greatly. Models were least sensitive to increased global precipitation (+3.9 % globally spatially uniform) with a consistent small positive response in CH4 fluxes and wetland area. Results from the 20th century transient simulation show that interactions between climate forcings could have strong non-linear effects. Third, we presently do not have sufficient wetland methane observation datasets adequate to evaluate model fluxes at a spatial scale comparable to model grid cells (commonly 0.5°). This limitation severely restricts our ability to model global wetland CH4 emissions with confidence. Our simulated wetland extents are also difficult to evaluate due to extensive disagreements between wetland mapping and remotely sensed inundation datasets. Fourth, the large range in predicted CH4 emission rates leads to the conclusion that there is both substantial parameter and structural uncertainty in large-scale CH4 emission models, even after uncertainties in wetland areas are accounted for.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

The role of different sky conditions on diffuse PAR fraction (ϕ), air temperature (Ta), vapor pressure deficit (vpd) and GPP in a deciduous forest is investigated using eddy covariance observations of CO2 fluxes and radiometer and ceilometer observations of sky and PAR conditions on hourly and growing season timescales. Maximum GPP response occurred under moderate to high PAR and ϕ and low vpd. Light response models using a rectangular hyperbola showed a positive linear relation between ϕ and effective quantum efficiency (α = 0.023ϕ + 0.012, r2 = 0.994). Since PAR and ϕ are negatively correlated, there is a tradeoff between the greater use efficiency of diffuse light and lower vpd and the associated decrease in total PAR available for photosynthesis. To a lesser extent, light response was also modified by vpd and Ta. The net effect of these and their relation with sky conditions helped enhance light response under sky conditions that produced higher ϕ. Six sky conditions were classified from cloud frequency and ϕ data: optically thick clouds, optically thin clouds, mixed sky (partial clouds within hour), high, medium and low optical aerosol. The frequency and light responses of each sky condition for the growing season were used to predict the role of changing sky conditions on annual GPP. The net effect of increasing frequency of thick clouds is to decrease GPP, changing low aerosol conditions has negligible effect. Increases in the other sky conditions all lead to gains in GPP. Sky conditions that enhance intermediate levels of ϕ, such as thin or scattered clouds or higher aerosol concentrations from volcanic eruptions or anthropogenic emissions, will have a positive outcome on annual GPP, while an increase in cloud cover will have a negative impact. Due to the ϕ/PAR tradeoff and since GPP response to changes in individual sky conditions differ in sign and magnitude, the net response of ecosystem GPP to future sky conditions is non-linear and tends toward moderation of change.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

We consider the forecasting performance of two SETAR exchange rate models proposed by Kräger and Kugler [J. Int. Money Fin. 12 (1993) 195]. Assuming that the models are good approximations to the data generating process, we show that whether the non-linearities inherent in the data can be exploited to forecast better than a random walk depends on both how forecast accuracy is assessed and on the ‘state of nature’. Evaluation based on traditional measures, such as (root) mean squared forecast errors, may mask the superiority of the non-linear models. Generalized impulse response functions are also calculated as a means of portraying the asymmetric response to shocks implied by such models.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

This paper presents and implements a number of tests for non-linear dependence and a test for chaos using transactions prices on three LIFFE futures contracts: the Short Sterling interest rate contract, the Long Gilt government bond contract, and the FTSE 100 stock index futures contract. While previous studies of high frequency futures market data use only those transactions which involve a price change, we use all of the transaction prices on these contracts whether they involve a price change or not. Our results indicate irrefutable evidence of non-linearity in two of the three contracts, although we find no evidence of a chaotic process in any of the series. We are also able to provide some indications of the effect of the duration of the trading day on the degree of non-linearity of the underlying contract. The trading day for the Long Gilt contract was extended in August 1994, and prior to this date there is no evidence of any structure in the return series. However, after the extension of the trading day we do find evidence of a non-linear return structure.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

A number of tests for non-linear dependence in time series are presented and implemented on a set of 10 daily sterling exchange rates covering the entire post Bretton-Woods era until the present day. Irrefutable evidence of non-linearity is shown in many of the series, but most of this dependence can apparently be explained by reference to the GARCH family of models. It is suggested that the literature in this area has reached an impasse, with the presence of ARCH effects clearly demonstrated in a large number of papers, but with the tests for non-linearity which are currently available being unable to classify any additional non-linear structure.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Although there is a strong policy interest in the impacts of climate change corresponding to different degrees of climate change, there is so far little consistent empirical evidence of the relationship between climate forcing and impact. This is because the vast majority of impact assessments use emissions-based scenarios with associated socio-economic assumptions, and it is not feasible to infer impacts at other temperature changes by interpolation. This paper presents an assessment of the global-scale impacts of climate change in 2050 corresponding to defined increases in global mean temperature, using spatially-explicit impacts models representing impacts in the water resources, river flooding, coastal, agriculture, ecosystem and built environment sectors. Pattern-scaling is used to construct climate scenarios associated with specific changes in global mean surface temperature, and a relationship between temperature and sea level used to construct sea level rise scenarios. Climate scenarios are constructed from 21 climate models to give an indication of the uncertainty between forcing and response. The analysis shows that there is considerable uncertainty in the impacts associated with a given increase in global mean temperature, due largely to uncertainty in the projected regional change in precipitation. This has important policy implications. There is evidence for some sectors of a non-linear relationship between global mean temperature change and impact, due to the changing relative importance of temperature and precipitation change. In the socio-economic sectors considered here, the relationships are reasonably consistent between socio-economic scenarios if impacts are expressed in proportional terms, but there can be large differences in absolute terms. There are a number of caveats with the approach, including the use of pattern-scaling to construct scenarios, the use of one impacts model per sector, and the sensitivity of the shape of the relationships between forcing and response to the definition of the impact indicator.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Flash floods pose a significant danger for life and property. Unfortunately, in arid and semiarid environment the runoff generation shows a complex non-linear behavior with a strong spatial and temporal non-uniformity. As a result, the predictions made by physically-based simulations in semiarid areas are subject to great uncertainty, and a failure in the predictive behavior of existing models is common. Thus better descriptions of physical processes at the watershed scale need to be incorporated into the hydrological model structures. For example, terrain relief has been systematically considered static in flood modelling at the watershed scale. Here, we show that the integrated effect of small distributed relief variations originated through concurrent hydrological processes within a storm event was significant on the watershed scale hydrograph. We model these observations by introducing dynamic formulations of two relief-related parameters at diverse scales: maximum depression storage, and roughness coefficient in channels. In the final (a posteriori) model structure these parameters are allowed to be both time-constant or time-varying. The case under study is a convective storm in a semiarid Mediterranean watershed with ephemeral channels and high agricultural pressures (the Rambla del Albujón watershed; 556 km 2 ), which showed a complex multi-peak response. First, to obtain quasi-sensible simulations in the (a priori) model with time-constant relief-related parameters, a spatially distributed parameterization was strictly required. Second, a generalized likelihood uncertainty estimation (GLUE) inference applied to the improved model structure, and conditioned to observed nested hydrographs, showed that accounting for dynamic relief-related parameters led to improved simulations. The discussion is finally broadened by considering the use of the calibrated model both to analyze the sensitivity of the watershed to storm motion and to attempt the flood forecasting of a stratiform event with highly different behavior.