887 resultados para Non-gaussian statistical mechanics
Resumo:
Binding, David; Phillips, P.M.; Philips, T.N., (2006) 'Contraction/expansion flows: The pressure drop and related issues', Journal of Non-Newtonian Fluid Mechanics 137 pp.31-38 RAE2008
Resumo:
A semi-Lagrangian finite volume scheme for solving viscoelastic flow problems is presented. A staggered grid arrangement is used in which the dependent variables are located at different mesh points in the computational domain. The convection terms in the momentum and constitutive equations are treated using a semi-Lagrangian approach in which particles on a regular grid are traced backwards over a single time-step. The method is applied to the 4 : 1 planar contraction problem for an Oldroyd B fluid for both creeping and inertial flow conditions. The development of vortex behaviour with increasing values of We is analyzed.
Resumo:
A comprehensive simulation of solidification/melting processes requires the simultaneous representation of free surface fluid flow, heat transfer, phase change, non-linear solid mechanics and, possibly, electromagnetics together with their interactions in what is now referred to as "multi-physics" simulation. A 3D computational procedure and software tool, PHYSICA, embedding the above multi-physics models using finite volume methods on unstructured meshes (FV-UM) has been developed. Multi-physics simulations are extremely compute intensive and a strategy to parallelise such codes has, therefore, been developed. This strategy has been applied to PHYSICA and evaluated on a range of challenging multi-physics problems drawn from actual industrial cases.
Resumo:
An unstructured cell-centred finite volume method for modelling viscoelastic flow is presented. The method is applied to the flow through a planar channel and the 4:1 planar contraction for creeping flow of an Oldroyd-B fluid. The results are presented for a range of Weissenberg numbers. In the case of the planar channel results are compared with analytical solutions. For the 4:1 planar contraction benchmark problem the convection terms in the constitutive equations are approximated using both first and second order differencing schemes to compare the techniques and the effect of mesh refinement on the solution is investigated. This is the first time that a fully unstructured, cell-centredfinitevolume technique has been used to model the Oldroyd-B fluid for the test cases presented in this paper.
Resumo:
We investigate entanglement properties of a recently introduced class of macroscopic quantum superpositions in two-mode mixed states. One of the tools we use in order to infer the entanglement in this non-Gaussian class of states is the power to entangle a qubit system. Our study reveals features which are hidden in a standard approach to entanglement investigation based on the uncertainty principle of the quadrature variables. We briefly describe the experimental setup corresponding to our theoretical scenario and a suitable modification of the protocol which makes our proposal realizable within the current experimental capabilities.
Resumo:
The structure and dynamics of the ionic liquid 1-ethyl-3-methylimidazolium nitrate is studied by molecular dynamics simulations. We find long-range spatial correlations between the ions and a three-dimensional local structure that reflects the asymmetry of the cations. The main contribution to the configurational energy comes from the electrostatic interactions which leads to charge-ordering effects. Radial screening and threedimensional distribution of charge are also analyzed. The motion of a single ion is studied via velocity and reorientational correlation functions. It is found that ions "rattle" in a long-lived cage, while the orientational structure relaxes on a time scale longer than 200 ps. As in a supercooled liquid, the mean square displacements reveal a subdiffusive dynamics. In addition, the presence of dynamic heterogeneities can be detected by analyzing the non-Gaussian behavior of the van Hove correlation function and the spatial arrangement of the most mobile ions. The short-time collective dynamics is also studied through the electric current time correlation function.
Resumo:
We present a self-consistent tight-binding formalism to calculate the forces on individual atoms due to the flow of electrical current in atomic-scale conductors. Simultaneously with the forces, the method yields the local current density and the local potential in the presence of current flow, allowing a direct comparison between these quantities. The method is applicable to structures of arbitrary atomic geometry and can be used to model current-induced mechanical effects in realistic nanoscale junctions and wires. The formalism is implemented within a simple Is tight-binding model and is applied to two model structures; atomic chains and a nanoscale wire containing a vacancy.
Resumo:
We introduce and characterise time operators for unilateral shifts and exact endomorphisms. The associated shift representation of evolution is related to the spectral representation by a generalized Fourier transform. We illustrate the results for a simple exact system, namely the Renyi map.
Resumo:
For a digital echo canceller it is desirable to reduce the adaptation time, during which the transmission of useful data is not possible. LMS is a non-optimal algorithm in this case as the signals involved are statistically non-Gaussian. Walach and Widrow (IEEE Trans. Inform. Theory 30 (2) (March 1984) 275-283) investigated the use of a power of 4, while other research established algorithms with arbitrary integer (Pei and Tseng, IEEE J. Selected Areas Commun. 12(9)(December 1994) 1540-1547) or non-quadratic power (Shah and Cowan, IEE.Proc.-Vis. Image Signal Process. 142 (3) (June 1995) 187-191). This paper suggests that continuous and automatic, adaptation of the error exponent gives a more satisfactory result. The family of cost function adaptation (CFA) stochastic gradient algorithm proposed allows an increase in convergence rate and, an improvement of residual error. As special case the staircase CFA algorithm is first presented, then the smooth CFA is developed. Details of implementations are also discussed. Results of simulation are provided to show the properties of the proposed family of algorithms. (C) 2000 Elsevier Science B.V. All rights reserved.
Resumo:
Modeling of on-body propagation channels is of paramount importance to those wishing to evaluate radio channel performance for wearable devices in body area networks (BANs). Difficulties in modeling arise due to the highly variable channel conditions related to changes in the user's state and local environment. This study characterizes these influences by using time-series analysis to examine and model signal characteristics for on-body radio channels in user stationary and mobile scenarios in four different locations: anechoic chamber, open office area, hallway, and outdoor environment. Autocorrelation and cross-correlation functions are reported and shown to be dependent on body state and surroundings. Autoregressive (AR) transfer functions are used to perform time-series analysis and develop models for fading in various on-body links. Due to the non-Gaussian nature of the logarithmically transformed observed signal envelope in the majority of mobile user states, a simple method for reproducing the failing based on lognormal and Nakagami statistics is proposed. The validity of the AR models is evaluated using hypothesis testing, which is based on the Ljung-Box statistic, and the estimated distributional parameters of the simulator output compared with those from experimental results.
Resumo:
By means of the time dependent density matrix renormalization group algorithm we study the zero-temperature dynamics of the Von Neumann entropy of a block of spins in a Heisenberg chain after a sudden quench in the anisotropy parameter. In the absence of any disorder the block entropy increases linearly with time and then saturates. We analyse the velocity of propagation of the entanglement as a function of the initial and final anisotropies and compare our results, wherever possible, with those obtained by means of conformal field theory. In the disordered case we find a slower ( logarithmic) evolution which may signal the onset of entanglement localization.