962 resultados para Neural cell type-substrate interactions
Resumo:
Within a developing organism, cells require information on where they are in order to differentiate into the correct cell-type. Pattern formation is the process by which cells acquire and process positional cues and thus determine their fate. This can be achieved by the production and release of a diffusible signaling molecule, called a morphogen, which forms a concentration gradient: exposure to different morphogen levels leads to the activation of specific signaling pathways. Thus, in response to the morphogen gradient, cells start to express different sets of genes, forming domains characterized by a unique combination of differentially expressed genes. As a result, a pattern of cell fates and specification emerges.Though morphogens have been known for decades, it is not yet clear how these gradients form and are interpreted in order to yield highly robust patterns of gene expression. During my PhD thesis, I investigated the properties of Bicoid (Bcd) and Decapentaplegic (Dpp), two morphogens involved in the patterning of the anterior-posterior axis of Drosophila embryo and wing primordium, respectively. In particular, I have been interested in understanding how the pattern proportions are maintained across embryos of different sizes or within a growing tissue. This property is commonly referred to as scaling and is essential for yielding functional organs or organisms. In order to tackle these questions, I analysed fluorescence images showing the pattern of gene expression domains in the early embryo and wing imaginal disc. After characterizing the extent of these domains in a quantitative and systematic manner, I introduced and applied a new scaling measure in order to assess how well proportions are maintained. I found that scaling emerged as a universal property both in early embryos (at least far away from the Bcd source) and in wing imaginal discs (across different developmental stages). Since we were also interested in understanding the mechanisms underlying scaling and how it is transmitted from the morphogen to the target genes down in the signaling cascade, I also quantified scaling in mutant flies where this property could be disrupted. While scaling is largely conserved in embryos with altered bcd dosage, my modeling suggests that Bcd trapping by the nuclei as well as pre-steady state decoding of the morphogen gradient are essential to ensure precise and scaled patterning of the Bcd signaling cascade. In the wing imaginal disc, it appears that as the disc grows, the Dpp response expands and scales with the tissue size. Interestingly, scaling is not perfect at all positions in the field. The scaling of the target gene domains is best where they have a function; Spalt, for example, scales best at the position in the anterior compartment where it helps to form one of the anterior veins of the wing. Analysis of mutants for pentagone, a transcriptional target of Dpp that encodes a secreted feedback regulator of the pathway, indicates that Pentagone plays a key role in scaling the Dpp gradient activity.
Resumo:
Neurofilamentous changes in select groups of neurons are associated with the degenerative changes of many human age-related neurodegenerative diseases. To examine the possible effects of aging on the neuronal cytoskeleton containing human proteins, the retinas of transgenic mice expressing the gene for the human middle-sized neurofilament triplet were investigated at 3 or 12 months of age. Transgenic mice developed tangle-like neurofilamentous accumulations in a subset of retinal ganglion cells at 12 months of age. These neurofilamentous accumulations, which also involved endogenous neurofilament proteins, were present in the perikarya and proximal processes of large ganglion cells and were predominantly located in peripheral retina. The presence of the human protein may thus confer vulnerability of the cytoskeleton to age-related alterations in this specific retinal cell type and may serve as a model for similar cellular changes associated with Alzheimer's disease and glaucoma.
Resumo:
The excitatory neurotransmitter glutamate has been reported to have a major impact on brain energy metabolism. Using primary cultures of rat hippocampal neurons, we observed that glutamate reduces glucose utilization in this cell type, suggesting alteration in mitochondrial oxidative metabolism. The aquaglyceroporin AQP9 and the monocarboxylate transporter MCT2, two transporters for oxidative energy substrates, appear to be present in mitochondria of these neurons. Moreover, they not only co-localize but they interact with each other as they were found to co-immunoprecipitate from hippocampal neuron homogenates. Exposure of cultured hippocampal neurons to glutamate 100 μM for 1 h led to enhanced expression of both AQP9 and MCT2 at the protein level without any significant change at the mRNA level. In parallel, a similar increase in the protein expression of LDHA was evidenced without an effect on the mRNA level. These data suggest that glutamate exerts an influence on neuronal energy metabolism likely through a regulation of the expression of some key mitochondrial proteins.
Resumo:
Aldosterone and corticosterone bind to mineralocorticoid (MR) and glucocorticoid receptors (GR), which, upon ligand binding, are thought to translocate to the cell nucleus to act as transcription factors. Mineralocorticoid selectivity is achieved by the 11β-hydroxysteroid dehydrogenase type 2 (11β-HSD2) that inactivates 11β-hydroxy glucocorticoids. High expression levels of 11β-HSD2 characterize the aldosterone-sensitive distal nephron (ASDN), which comprises the segment-specific cells of late distal convoluted tubule (DCT2), connecting tubule (CNT), and collecting duct (CD). We used MR- and GR-specific antibodies to study localization and regulation of MR and GR in kidneys of rats with altered plasma aldosterone and corticosterone levels. In control rats, MR and GR were found in cell nuclei of thick ascending limb (TAL), DCT, CNT, CD cells, and intercalated cells (IC). GR was also abundant in cell nuclei and the subapical compartment of proximal tubule (PT) cells. Dietary NaCl loading, which lowers plasma aldosterone, caused a selective removal of GR from cell nuclei of 11β-HSD2-positive ASDN. The nuclear localization of MR was unaffected. Adrenalectomy (ADX) resulted in removal of MR and GR from the cell nuclei of all epithelial cells. Aldosterone replacement rapidly relocated the receptors in the cell nuclei. In ASDN cells, low-dose corticosterone replacement caused nuclear localization of MR, but not of GR. The GR was redistributed to the nucleus only in PT, TAL, early DCT, and IC that express no or very little 11β-HSD2. In ASDN cells, nuclear GR localization was only achieved when corticosterone was replaced at high doses. Thus ligand-induced nuclear translocation of MR and GR are part of MR and GR regulation in the kidney and show remarkable segment- and cell type-specific characteristics. Differential regulation of MR and GR may alter the level of heterodimerization of the receptors and hence may contribute to the complexity of corticosteroid effects on ASDN function.
Resumo:
Variation in cellular gene expression levels has been shown to be inherited. Expression is controlled at transcriptional and post-transcriptional levels. Internal ribosome entry sites (IRES) are used by viruses to bypass inhibition of cap-dependent translation, and by eukaryotic cells to control translation under conditions when protein synthesis is inhibited. We aimed at identifying genomic determinants of variability in IRES-mediated translation of viral [Encephalomyocarditis virus (EMCV)] and cellular IRES [X-linked inhibitor-of-apoptosis (XIAP) and c-myc]. Bicistronic lentiviral constructs expressing two fluorescent reporters were used to transduce laboratory and B lymphoblastoid cell lines [15 CEPH pedigrees (n = 205) and 50 unrelated individuals]. IRES efficiency varied according to cell type and among individuals. Control of IRES activity has a significant genetic component (h(2) of 0.47 and 0.36 for EMCV and XIAP, respectively). Quantitative linkage analysis identified a suggestive locus (LOD 2.35) on chromosome 18q21.2, and genome-wide association analysis revealed of a cluster of SNPs on chromosome 3, intronic to the FHIT gene, marginally associated (P = 5.9E-7) with XIAP IRES function. This study illustrates the in vitro generation of intermediate phenotypes by using cell lines for the evaluation of genetic determinants of control of elements such as IRES.
Resumo:
Understanding the complexity of cancer depends on an elucidation of the underlying regulatory networks, at the cellular and intercellular levels and in their temporal dimension. This Opinion article focuses on the multilevel crosstalk between the Notch pathway and the p53 and p63 pathways. These two coordinated signalling modules are at the interface of external damaging signals and control of stem cell potential and differentiation. Positive or negative reciprocal regulation of the two pathways can vary with cell type and cancer stage. Therefore, selective or combined targeting of the two pathways could improve the efficacy and reduce the toxicity of cancer therapies.
Resumo:
Abstract Activation of the Wnt pathway through mutation of the adenomatous polyposis coli and 13-catenin genes is a hallmark of colon cancer. These mutations lead to constitutive activation of transcription from promoters containing binding sites for Tcf/LEF transcription factors. Tumour-selective replicating oncolytic viruses are promising agents for cancer therapy. They can in principle spread throughout a tumour mass until all the cancerous cells are killed, and clinical trials have shown that they are safe except at very high doses. Adenoviruses are interesting candidates for virotherapy because their biology is well understood and their small genome can be rapidly mutated. Adenoviruses with Tcf binding sites in the E2 early promoter replicate selectively in cells with an active Wnt pathway. Although these viruses can replicate in a broad panel of colon cancer cell lines, some colorectal cancer cells are only semi-permissive for Tcf-virus replication. The aim of my thesis was to increase the safety and the efficacy of Tcf-viruses for colon cancer virotherapy. I replaced the endogenous ElA viral promoter by four Tcf binding sites and showed that transcription from the mutant promoter was specifically activated by the Wnt pathway. A virus with Tcf binding sites in the ElA and E4 promoters was more selective for the Wnt pathway than the former Tcf-E2 viruses. Moreover, insertion of Tcf binding sites into all early promoters further increased viral selectivity, but reduced viral activity. I showed that Tcf-dependent transcription was inhibited by the interaction between ElA and p300, but deletion of the p300-binding site of ElA generally led to viral attenuation. In the semi-permissive cell lines, replication of Tcf-viruses remained lower than that of the wild-type virus. The E2 promoter was the most sensitive to the cell type, but I was unable to improve its activity by targeted mutagenesis. To increase the toxicity of the Tcf-E1A/E4 virus, I decided to express a suicide gene, yeast cytosine deaminase (yCD), late during infection. This enzyme converts the prodrug 5-FC to the cytotoxic agent 5-FU. yCD was expressed in a DNA replication-dependent manner and increased viral toxicity in presence of 5-FC. Tcf-ElA and yCD adenoviruses are potentially useful vectors for the treatment of liver metastases from colorectal tumours. Résumé Dans la quasi-totalité des cancers du côlon, la voie Wnt est activée par des mutations dans les gènes codant pour APC ou pour la (3-caténine. Ces mutations activent de façon constitutive la transcription de promoteurs contenant des sites de liaison pour les facteurs de transcription Tcf/LEF. Les virus réplicatifs spécifiques aux tumeurs sont des agents prometteurs pour la thérapie cancéreuse. En principe, ces vecteurs peuvent se propager dans une masse tumorale jusqu'à destruction de toutes les cellules cancéreuses, et des études cliniques ont démontré que de tels vecteurs n'étaient pas toxiques, sauf à de très hautes doses. Les adénovirus sont des candidats intéressants pour la thérapie virale car leur biologie est bien définie et leur petit génome peut être rapidement modifié. Des adénovirus comportant des sites de liaison à Tcf dans leur promoteur précoce E2 se répliquent sélectivement dans les cellules qui possèdent une voie Wnt active. Ces virus sont capables de se répliquer dans un grand nombre de cellules cancéreuses du côlon, bien que certaines de ces cellules ne soient que semi-permissives pour la réplication des virus Tcf. Le but de ma thèse était d'augmenter la sécurité et l'efficacité des virus Tcf. Le promoteur viral endogène ElA a été remplacé par quatre sites de liaison à Tcf, ce qui a rendu son activation dépendante de la voie Wnt. Un virus comportant des sites de liaison pour Tcf dans les promoteurs ElA et E4 était plus sélectif pour la voie Wnt que les précédents virus Tcf-E2, et un virus comportant des sites Tcf dans tous les promoteurs précoces était encore plus sélectif, mais moins actif. J'ai montré que l'interaction entre ElA et p300 inhibait la transcription dépendante de Tcf, mais la délétion du domaine concerné dans ElA a eu pour effet d'atténuer les virus. Dans les cellules semi-permissives, la réplication des virus Tcf était toujours plus basse que celle du virus sauvage. J'ai identifié le promoteur E2 comme étant le plus sensible au type cellulaire, mais n'ai pas pu augmenter son activité par mutagenèse. Pour augmenter la toxicité du virus Tcf-E1A/E4, j'ai décidé d'exprimer un gène suicide, la cytosine déaminase (yCD), pendant la phase tardive de l'infection. Cette enzyme transforme la procirogue 5-FC en l'agent cytotoxique 5-FU. yCD était exprimée après réplication de l'ADN viral et augmentait la toxicité virale en présence de 5-FC. Les virus Tcf-ElA et yCD sont des vecteurs potentiellement utiles pour le traitement des métastases hépatiques de cancers colorectaux.
Resumo:
This thesis describes the development of advanced silicon radiation detectors and their characterization by simulations, used in the work for searching elementary particles in the European Organization for Nuclear Research, CERN. Silicon particle detectors will face extremely harsh radiation in the proposed upgrade of the Large Hadron Collider, the future high-energy physics experiment Super-LHC. The increase in the maximal fluence and the beam luminosity up to 1016 neq / cm2 and 1035 cm-2s-1 will require detectors with a dramatic improvement in radiation hardness, when such a fluence will be far beyond the operational limits of the present silicon detectors. The main goals of detector development concentrate on minimizing the radiation degradation. This study contributes mainly to the device engineering technology for developing more radiation hard particle detectors with better characteristics. Also the defect engineering technology is discussed. In the nearest region of the beam in Super-LHC, the only detector choice is 3D detectors, or alternatively replacing other types of detectors every two years. The interest in the 3D silicon detectors is continuously growing because of their many advantages as compared to conventional planar detectors: the devices can be fully depleted at low bias voltages, the speed of the charge collection is high, and the collection distances are about one order of magnitude less than those of planar technology strip and pixel detectors with electrodes limited to the detector surface. Also the 3D detectors exhibit high radiation tolerance, and thus the ability of the silicon detectors to operate after irradiation is increased. Two parameters, full depletion voltage and electric field distribution, is discussed in more detail in this study. The full depletion of the detector is important because the only depleted area in the detector is active for the particle tracking. Similarly, the high electric field in the detector makes the detector volume sensitive, while low-field areas are non-sensitive to particles. This study shows the simulation results of full depletion voltage and the electric field distribution for the various types of 3D detectors. First, the 3D detector with the n-type substrate and partial-penetrating p-type electrodes are researched. A detector of this type has a low electric field on the pixel side and it suffers from type inversion. Next, the substrate is changed to p-type and the detectors having electrodes with one doping type and the dual doping type are examined. The electric field profile in a dual-column 3D Si detector is more uniform than that in the single-type column 3D detector. The dual-column detectors are the best in radiation hardness because of their low depletion voltages and short drift distances.
Resumo:
Monitoring of cytomegalovirus cell-mediated immunity is a promising tool for the refinement of preventative and therapeutic strategies posttransplantation. Typically, the interferon-γ response to T cell stimulation is measured. We evaluated a broad range of cytokine and chemokines to better characterize the ex vivo host-response to CMV peptide stimulation. In a cohort of CMV viremic organ transplant recipients, chemokine expression-specifically CCL8 (AUC 0.849 95% CI 0.721-0.978; p = 0.003) and CXCL10 (AUC 0.841, 95% CI 0.707-0.974; p = 0.004)-was associated with control of viral replication. In a second cohort of transplant recipients at high-risk for CMV, the presence of a polymorphism in the CCL8 promoter conferred an increased risk of viral replication after discontinuation of antiviral prophylaxis (logrank hazard ratio 3.6; 95% CI 2.077-51.88). Using cell-sorting experiments, we determined that the primary cell type producing CCL8 in response to CMV peptide stimulation was the monocyte fraction. Finally, in vitro experiments using standard immunosuppressive agents demonstrated a dose-dependent reduction in CCL8 production. Chemokines appear to be important elements of the cell-mediated response to CMV infection posttransplant, as here suggested for CCL8, and translation of this knowledge may allow for the tailoring and improvement of preventative strategies.
Resumo:
Since the discovery of hypocretins/orexins (Hcrt/Ox) in 1998, several narcoleptic mouse models, such as Hcrt-KO, Hcrtrl-KO, Hcrtr2-KO and double receptors KO mice, and orexin-ataxin transgenic mice were generated. The available Hcrt mouse models do not allow the dissection of the specific role of Hcrt in each target region. Dr. Anne Vassalli generated loxP-flanked alleles for each Hcrt receptor, which are manipulated by Cre recombinase to generate mouse lines with disrupted Hcrtrl or Hcrtr2 (or both) in cell type-specific manner. The role of noradrenaline (NA) and dopamine (OA) in ttie regulation of vigilance states is well documented. The purpose of this thesis is to explore the role of the Hcrt input into these two monoaminergic systems. Chronic loss of Hcrtrl in NA neurons consolidated paradoxical sleep (PS), and altered wakefulness brain activity in baseline, during the sleep deprivation (SD), and when mice were challenged by a novel environment, or exposed to nest-building material. The analysis of alterations in the sleep EEG delta power showed a consistent correlation with the changes in the preceding waking quality in these mice. Targeted inactivation of Hcrt input into DA neurons showed that Hcrtr2 inactivation present the strongest phenotype. The loss of Hcrtr2 in DA neurons caused modified brain activities in spontaneous wakefulness, during SD, and in novel environmental conditions. In addition to alteration of wakefulness quality and quantity, conditional inactivation of Hcrtr2 in DA neurons caused an increased in time spent in PS in baseline and a delayed and less complete PS recovery after SD. In the first 30 min of sleep recovery, single (i.e. for Hcrtrl or Hcrtr2) conditional knockout receptor mice had opposite changes in delta activity, including an increased power density in the fast delta range with specific inactivation of Hcrtr2, but a decreased power density in the same range with specific inactivation of Hcrtrl in DA cells. These studies demonstrate a complex impact of Hcrt receptors signaling in both NA and DA system, not only on quantity and quality of wakefulness, but also on PS amount regulation as well as on SWS delta power expression. -- Depuis la découverte des hypocrétines/orexines (Hcrt/Ox) en 1998, plusieurs modèles de souris, narcoleptiques telles que Hcrt-KO, Hcrtr2-KO et récepteurs doubles KO et les souris transgéniques orexine-ataxine ont été générés. Les modèles de souris Hcrt disponibles ne permettaient pas la dissection du rôle spécifique de l'Hcrt dans chaque noyau neuronal cible. Notre laboratoire a généré des allèles loxP pour chacun des 2 gènes codant pour les récepteurs Hcrtr, qui sont manipulés par recombinase Cre pour générer des lignées de souris avec Hcrtrl inactivé, ou Hcrtr2 inactivé, (ou les deux), spécifiquement dans un type cellulaire particulier. Le rôle de la noradrénaline (NA) et la dopamine (DA) dans la régulation des états de vigilance est bien documentée. Le but de cette thèse est d'étudier le rôle de l'afférence Hcrt dans ces deux systèmes monoaminergiques au niveau de l'activité cérébrale telle qu'elle apparaît dans l'électroencéphalogramme (EEG). Mon travail montre que la perte chronique de Hcrtrl dans les neurones NA consolide le sommeil paradoxal (PS), et l'activité cérébrale de l'éveil est modifiée en condition spontanée, au cours d'une experience de privation de sommeil (SD), et lorsque les souris sont présentées à un nouvel environnement, ou exposées à des matériaux de construction du nid. Ces modifications de l'éveil sont corrélées à des modifications de puissance de l'activité delta du sommeil lent qui le suit. L'inactivation ciblée des Hcrtrs dans les neurones DA a montré que l'inactivation Hcrtr2 conduit au phénotype le plus marqué. La perte de Hcrtr2 dans les neurones DA mène à des modification d'activité cérébrale en éveil spontané, pendant SD, ainsi que dans des conditions environnementales nouvelles. En plus de l'altération de la qualité de l'éveil et de la quantité, l'inactivation conditionnelle de Hcrtr2 dans les neurones DA a provoqué une augmentation du temps passé en sommeil paradoxal (PS) en condition de base, et une reprise retardée et moins complète du PS après SD. Dans les 30 premières minutes de la récupération de sommeil, les modèles inactivés pour un seul des récepteurs (ie pour Hcrtrl ou Hcrtr2 seulement) montrent des changements opposés en activité delta, en particulier une densité de puissance accrue dans le delta rapide avec l'inactivation spécifique de Hcrtr2, mais une densité de puissance diminuée dans cette même gamme chez les souris inactivées spécifiquement en Hcrtrl dans les neurones DA. Ces études démontrent un impact complexe de l'inactivation de la neurotransmission au niveau des récepteurs d'Hcrt dans les deux compartiments NA et DA, non seulement sur la quantité et la qualité de l'éveil, mais aussi sur la régulation de quantité de sommeil paradoxal, ainsi que sur l'expression de la puissance delta pendant le sommeil lent.
Resumo:
Cell-type-specific gene silencing is critical to understand cell functions in normal and pathological conditions, in particular in the brain where strong cellular heterogeneity exists. Molecular engineering of lentiviral vectors has been widely used to express genes of interest specifically in neurons or astrocytes. However, we show that these strategies are not suitable for astrocyte-specific gene silencing due to the processing of small hairpin RNA (shRNA) in a cell. Here we develop an indirect method based on a tetracycline-regulated system to fully restrict shRNA expression to astrocytes. The combination of Mokola-G envelope pseudotyping, glutamine synthetase promoter and two distinct microRNA target sequences provides a powerful tool for efficient and cell-type-specific gene silencing in the central nervous system. We anticipate our vector will be a potent and versatile system to improve the targeting of cell populations for fundamental as well as therapeutic applications.
Resumo:
Neurofilament proteins (NFs) are the major components of the intermediate filaments of the neuronal cytoskeleton. The three different NF proteins; the low (NF-L), medium (NF-M),and dendrites.NF proteins play an important role in neuronal development, and plasticity,and seem to contribute to the pathophysiology of several diseases. However, the detailed expression patterns of NF proteins in the course of postnatal aturation, and in response to seizures in the rat have remained unknown. In this work, I have studied the developmental expression and cellular distribution of the three NF proteins in the rat hippocampus during the postnatal development. The reactivity of NF proteins in response to kainic acid (KA)-induced status epilepticus (SE)was studied in the hippocampus of 9-day-old rats, and using in vitro organotypic hippocampal slices cultures prepared from P6-7 rats. The results showed that NF-L and NF-M proteins are expressed already at the postnatal day 1, while the expression of NF-H mainly occurred during the second postnatal week. The immunoreactivity of NF proteins varied depending on the cell type and sub-cellular location in the hippocampus. In adult rats, KA-induced SE typically results in severe and permanent NF degradation. However, in our P9 rats KA-induced SE resulted in a transient increase in the expression of NF proteins during the first few hours but not degradation. No neuronal death or mossy fiber sprouting was observed at any time after SE. The in vitro studies with OHCs, which mimick the in vivo developing models where a local injection of KA is applied(e.g. intrahippocampal), indicated that NF proteins were rapidly degraded in response to KA treatment, this effect being effectively inhibited by the treatment with the AMPA receptor antagonist CNQX, and calpain inhibitor MDL-28170. These compounds also significantly ameliorated the KA-induced region-specific neuronal damage. The NMDA receptor antagonist and the L-type Ca2+ channel blocker did not have any significant effect. In conclusion, the results indicate that the developmental expression of NF in the rat hippocampus is differentially regulated and targeted in the different hippocampal cell types during the postnatal development. Furthermore, despite SE, the mechanisms leading to NF degradation and neuronal death are not activated in P9 rats unlike in adults. The reason for this remains unknown. The results in organotypic hippocampal cultures confirm the validity of this in vitro model to study development processes, and to perform pharmacological studies. The results also suggest that calpain proteases as interesting pharmacological targets to reduce neuronal damage after acute excitotoxic insults.
Resumo:
An increased expression of nitric oxide synthase (NOS) has been observed in human colon carcinoma cell lines as well as in human gynecological, breast, and central nervous system tumors. This observation suggests a pathobiological role of tumor-associated NO production. Hence, we investigated NOS expression in human colon cancer in respect to tumor staging, NOS-expressing cell type(s), nitrotyrosine formation, inflammation, and vascular endothelial growth factor expression. Ca2+-dependent NOS activity was found in normal colon and in tumors but was significantly decreased in adenomas (P < 0.001) and carcinomas (Dukes' stages A-D: P < 0.002). Ca2+-independent NOS activity, indicating inducible NOS (NOS2), is markedly expressed in approximately 60% of human colon adenomas (P < 0.001 versus normal tissues) and in 20-25% of colon carcinomas (P < 0.01 versus normal tissues). Only low levels were found in the surrounding normal tissue. NOS2 activity decreased with increasing tumor stage (Dukes' A-D) and was lowest in colon metastases to liver and lung. NOS2 was detected in tissue mononuclear cells (TMCs), endothelium, and tumor epithelium. There was a statistically significant correlation between NOS2 enzymatic activity and the level of NOS2 protein detected by immunohistochemistry (P < 0.01). Western blot analysis of tumor extracts with Ca2+-independent NOS activity showed up to three distinct NOS2 protein bands at Mr 125,000-Mr 138,000. The same protein bands were heavily tyrosine-phosphorylated in some tumor tissues. TMCs, but not the tumor epithelium, were immunopositive using a polyclonal anti-nitrotyrosine antibody. However, only a subset of the NOS2-expressing TMCs stained positively for 3-nitrotyrosine, which is a marker for peroxynitrite formation. Furthermore, vascular endothelial growth factor expression was detected in adenomas expressing NOS2. These data are consistent with the hypothesis that excessive NO production by NOS2 may contribute to the pathogenesis of colon cancer progression at the transition of colon adenoma to carcinoma in situ.
Resumo:
Primary rodent astroglial-enriched cultures are the most popular model to study astroglial biology in vitro. From the original methods described in the 1970's a great number of minor modifications have been incorporated into these protocols by different laboratories. These protocols result in cultures in which the astrocyte is the predominant cell type, but astrocytes are never 100% of cells in these preparations. The aim of this review is to bring attention to the presence of microglia in astroglial cultures because, in my opinion, the proportion of and the role that microglial cells play in astroglial cultures are often underestimated. The main problem with ignoring microglia in these cultures is that relatively minor amounts of microglia can be responsible for effects observed on cultures in which the astrocyte is the most abundant cell type. If the relative contributions of astrocytes and microglia are not properly assessed an observed effect can be erroneously attributed to the astrocytes. In order to illustrate this point the case of NO production in activated astroglial-enriched cultures is examined. Lipopolysaccharide (LPS) induces nitric oxide (NO) production in astroglial-enriched cultures and this effect is very often attributed to astrocytes. However, a careful review of the published data suggests that LPS-induced NO production in rodent astroglial-enriched cultures is likely to be mainly microglial in origin. This review considers cell culture protocol factors that can affect the proportion of microglial cells in astroglial cultures, strategies to minimize the proportion of microglia in these cultures, and specific markers that allow the determination of such microglial proportions.
Resumo:
In recent years correlative microscopy, combining the power and advantages of different imaging system, e.g., light, electrons, X-ray, NMR, etc., has become an important tool for biomedical research. Among all the possible combinations of techniques, light and electron microscopy, have made an especially big step forward and are being implemented in more and more research labs. Electron microscopy profits from the high spatial resolution, the direct recognition of the cellular ultrastructure and identification of the organelles. It, however, has two severe limitations: the restricted field of view and the fact that no live imaging can be done. On the other hand light microscopy has the advantage of live imaging, following a fluorescently tagged molecule in real time and at lower magnifications the large field of view facilitates the identification and location of sparse individual cells in a large context, e.g., tissue. The combination of these two imaging techniques appears to be a valuable approach to dissect biological events at a submicrometer level. Light microscopy can be used to follow a labelled protein of interest, or a visible organelle such as mitochondria, in time, then the sample is fixed and the exactly same region is investigated by electron microscopy. The time resolution is dependent on the speed of penetration and fixation when chemical fixatives are used and on the reaction time of the operator for cryo-fixation. Light microscopy can also be used to identify cells of interest, e.g., a special cell type in tissue or cells that have been modified by either transfections or RNAi, in a large population of non-modified cells. A further application is to find fluorescence labels in cells on a large section to reduce searching time in the electron microscope. Multiple fluorescence labelling of a series of sections can be correlated with the ultrastructure of the individual sections to get 3D information of the distribution of the marked proteins: array tomography. More and more efforts are put in either converting a fluorescence label into an electron dense product or preserving the fluorescence throughout preparation for the electron microscopy. Here, we will review successful protocols and where possible try to extract common features to better understand the importance of the individual steps in the preparation. Further the new instruments and software, intended to ease correlative light and electron microscopy, are discussed. Last but not least we will detail the approach we have chosen for correlative microscopy.