861 resultados para NICKEL-TITANIUM
Resumo:
Statement of problem. Titanium has physical and mechanical properties, which have led to its increased use in dental prostheses despite casting difficulties due to high melting point and formation of oxide layers which affect the metal-ceramic bond strength.Purpose. This in vitro study evaluated the shear bond strength of the interface of 2 dental porcelains and pure titanium injected into a mold at 3 different temperatures.Material and methods. Using commercially pure (cp) titanium bars (Titanium, Grade I) melted at 1668degreesC and cast at mold temperatures of 430degreesC, 700degreesC or 900degreesC, 60 specimens were machined to 4 x 4 mm, with a base of 5 x 1 mm. The 4-mm surfaces were airborne-particle abraded with 100 mum aluminum oxide before applying and firing the bonding agent and evaluating the 2 porcelains (Triceram/Triline ti and Vita Titankeramik). Ten specimens were prepared for each temperature and porcelain combination Shear bond testing was performed in a universal testing machine, with a 500-kg load cell and crosshead speed of 0.5 mm/min. The specimens were loaded until failure. The interfaces of representative fractured specimens of each temperature were examined with a scanning electron microscope (SEM) and energy dispersive spectrometer (EDS). Data for shear bond strength (MPa) were statistically analyzed by 2-way ANOVA and the Tukey test (alpha = .05).Results. The results showed significant differences for the metal/porcelain interaction effect (P = .0464). There were no significant differences for the 2 porcelains (P = .4250). The Tukey test showed a significant difference between the pair cp Ti 430degreesC Triceram and cp Ti 900degreesC Triceram, with respective mean values and SDs of 59.74 +/- 11.62 and 34.03 +/- 10.35 MPa.Conclusion. Triceram porcelain showed a bond strength decrease with an increase in the mold temperature for casting titanium. The highest bond strength for Vita porcelain and the best metal-ceramic interface observed with the SEM were found with the mold temperature of 700degreesC.
Resumo:
Multi-walled carbon nanotubes (MWNT) were produced by chemical vapor deposition using yttria-stabilized zirconia/nickel (YSZ/Ni) catalysts. The catalysts were obtained by a liquid mixture technique that resulted in fine dispersed nanoparticles of NiO supported in the YSZ matrix. High quality MWNT having smooth walls, few defects, and low amounts of by-products such as amorphous carbon were obtained, even from catalysts with large Ni concentrations (> 50 wt.%). By adjusting the experimental parameters, such as flux of the carbon precursor (ethylene) and Ni concentration, both the MWNT morphology and the process yield could be controlled. The resulting YSZ/Ni/MWNT composites can be interesting due to their mixed ionic-electronic transport properties, which could be useful in electrochemical applications.
Resumo:
The cathodic behaviour of oxides formed on titanium electrodes in physiological solutions at potentials between 3 and 5 V (vs. SCE) was studied by cyclic voltammetry. In case of anodic polarization at potentials higher than 3 V (vs. SCE), a cathodic peak at similar to 0.4 V (vs. SCE) appears in the cathodic scan, which could be due to the reduction of unstable peroxides. The results show that this peak depends on the anodic potential and the oxidation time. This behaviour supposedly is due to the formation of unstable titanium peroxides like TiO3 during anodization. Based on repetitive oxidation-reduction processes can be concluded that the created amount of TiO3 inside of the TiO2 surface layer seems to be constant. (c) 2006 Elsevier Ltd. All rights reserved.
Resumo:
C22H32N2NiO6, triclinic, P (1) over bar (no. 2), a = 8.335(1) angstrom, b = 9.314(1) angstrom, c = 17.045(2) angstrom, alpha = 88.45(1)degrees, beta = 82.12(1)degrees, gamma = 70.296(9)degrees, V = 1233.7 angstrom(3), Z = 2, R-gt(F) = 0.050, wR(ref)(F-2) = 0.177, T = 293 K.
Resumo:
Despite the fact that chromium electrodeposition results in protection against wear and corrosion, combined with chemical resistance and good lubricity, the reduction in fatigue strength of base metal and environmental requirements causes one to search for possible alternatives. To improve the fatigue and corrosion resistance of AISI 4340 steel, an experimental study has been made for an intermediate electroless nickel layer deposited on base metal. The objective of this study was to analyze the effect of nickel underplate on the fatigue and corrosion strength of hard-chromium-plated AISI 4340 steel. Deposition of the conventional wear-resistant hard chromium plating leads to a decrease in mechanical properties of the base metal, especially the fatigue strength. Rotating bending fatigue tests results indicate better performance for conventional hard chromium plating. Good corrosion resistance in salt fog exposure was obtained for the accelerated hard chromium plating. Experimental data showed higher fatigue and corrosion resistance for samples prepared with accelerated hard chromium plate over electroless nickel plate, when compared with samples without electroless nickel underplate.
Resumo:
Traditional hydrotreating catalysts are constituted by molybdenum deposited on Al2O3 promoted by nickel and phosphorous. Several studies have shown that TiO2-Al2O3 mixed oxides are excellent supports for the active phases. Results concerning the preparation, characterization and testing of molybdenum catalyst supported on titania-alumina are presented. The support was prepared by sol-gel route using titanium and aluminum isopropoxides, the titanium one chelated with acetylacetone (acac) to promote similar hydrolysis ratio for both the alcoxides. The effect of nominal molar ratio [Ti]/[Ti+Al] on the microstructural features of nanometric particles was analyzed by X-Ray Diffraction, N-2 Adsorption Isotherms and Transmission Electron Microscopy. The catalytic activity of Mo impregnated supports was evaluated using the thiophene hydrodesulfurization at different temperatures and atmospheric pressure. The pores size distribution curve moves from the micropores to the mesopores by increasing the Ti contents, allowing the fine tuning of average size from 2.5 to 6 nm. Maximal (367 m(2).g(-1)) and minimal (127 m(2).g(-1)) surface area were found for support containing [Ti]/[Ti+Al] ratio equal to 0.1 and 1, respectively. The good mesopore texture of alumina-titania support with [Ti]/[Ti+Al] molar ratio between 0.3 and 0.5 was found particularly valuable for the preparation of well dispersed MoS2 active phase, leading to HDS catalyst with somewhat higher activity than that prepared using a commercial alumina support.
Resumo:
The contamination of water by metal compounds is a worldwide environmental problem. Concentrations of metals are widely related to biochemical values which are used in disease diagnosis due to environmental toxicity. The acute combined effects of cadmium and nickel on biochemical parameters were determined and compared with those of Cd2+ or Ni2+ alone in rats. Male adult rats were given drinking solutions of CdCl2 [Cd(II) cation, 100 mg/liter] or NiSO4 [Ni(II) cation, 100 mg/liter]. For the combined treatment, the animals (Ni+Cd) received both Ni(II)) cation (100 mg/liter) and Cd(II) cation (100 mg/liter). Nickel treatment induced increased alanine transaminase (ALT) activity and hepatotoxicity, but not renal injury. In contrast, cadmium exposure produced hepatic, renal and myocardial damage, characterized by increased creatinine, total and direct bilirubin concentrations and increased ALT and lactate dehydrogenase (LDH) activities. The combined effect Ni-Cd is less toxic than cadmium alone, suggesting antagonism between these toxicants. The toxicity of nickel and cadmium, alone and in combination, decreased Cu-Zn superoxide dismutase (SOD) activity and increased lipoperoxide formation. (C) 1998 Elsevier B.V. Ltd. All rights reserved.