913 resultados para Multi-objective analysis
Resumo:
Objective: To evaluate patients' perceptions of alterations occurring after chin bone harvesting.Materials and Methods: Thirty patients were evaluated subjectively by visual analog scale-related sensitivity, facial aesthetics, eating, speaking, and lower lip movement, during 12 months. Objective analysis used the static light touch neurosensorial test. The statistical analysis was executed with Friedman test with P < 0.05 for both samples.Results: Subjective analysis revealed no alterations (1) to facial aesthetics, eating, speaking or lower lip movement but sensitivity of the mental region went from a lot of alteration initially (5) to little at the end of the study (3). Objective analysis results showed normal sensitivity (1) in the region after 12 months.Conclusion: The discrepancy between subjective and objective analyses may be indicative of the limited precision of clinical testing for subjective impressions assessment. (Implant Dent 2012;21:411-414)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
This paper presents a comparison of reactive power support in distribution networks provided by switched Capacitor Banks (CBs) and Distributed Generators (DGs). Regarding switched CBs, a Tabu Search metaheuristic algorithm is developed to determine their optimal operation with the objective of reducing the power losses in the lines on the system, while meeting network constraints. on the other hand, the optimal operation of DGs is analyzed through an evolutionary Multi-Objective (MO) programming approach. The objectives of such approach are the minimization of power losses and operation cost of the DGs. The comparison of the reactive power support provided by switched CBs and DGs is carried out using a modified IEEE 34 bus distribution test system.
Resumo:
Wavelets are being extensively used in Geodetic applications. In this paper, the Multi-Resolution Analysis (MRA) using wavelets is applied to pseudorange and carrier phase GPS double differences (DDs) in order to reduce multipath effects. The wavelets were already applied to GPS carrier phase DDs, but some questions remain: How good can be the results, and are all multipath effects reduced? The answers to these questions are discussed in this paper. Thus, the wavelet transform is used to decompose the DD signals, splitting them in lower resolution components. After the decomposition process, the wavelet shrinkage is performed by thresholding to eliminate the components relative to multipath effects. Then, the DD observation can be reconstructed. This new DD signal is used to perform the baseline processing. The daily multipath repeatability was verified. With the application of the proposed approach, the results showed that the reliability of the ambiguity resolution and accuracy of the results improved when compared with the standard procedure. Furthermore, the method showed to be very efficient computationally, because, it is not noticed, at practical level, difference in the time span between the processing with and without application of the proposed method. However, only the high frequency multipath was eliminated.
Resumo:
The multipath effect affects the differential and relative positioning, even that one involving short baselines. So it is necessary to detect this effect, check the caused error level, and mainly, its removal. This paper aims at analysing and comparing some useful components in the detection of this effect. These components are the Signal to Noise Ratio (SNR), the values of MP1 and MP2 obtained from the TEQC software that indicates the multipath level in the carriers L1 and L2, the multipath repeatability in consecutive days and the elevation angle and the azimuth of the satellites. For this purpose, an experiment is carried out, comparing such components in the presence and the absence of reflector objects that cause the multipath. Not only there is clear multipath repeatability in the residuals, but it also appears in the measures SNR, MP1 and MP2, reaching up 99% of correlation. For reduction, at least, of the high frequency multipath effect, the Multi-Resolution Analysis using wavelets is applied in the double differences (DD) measures. Some statistical tests were accomplished, which indicate results improvement, and mainly, larger reliability in the solution of the ambiguities, reaching up 49% of improvement concerning the Ratio test without applying the proposed method.
Resumo:
The operational details of the apparent electrical conductivity (ECa) sensor manufactured by Veris Technologies have been extensively documented in literature reports, but the geographical distribution of these research studies indicate a strong regional concentration in the US Mid-west and Southern states. The agricultural lands of these states diverge significantly to the soil conditions and water regime of irrigated land in the US South-western states such as Arizona where there is no previous research reports of the use of this particular sensor. The objectives of the present study were to analyze the performance of this sensor under the conditions of typical soils in irrigated farms of Central Arizona. We tested under static conditions the performance of the sensor on three soils of contrasting texture. Observations were collected as time series data as soil moisture changed from saturation to permanent wilting point. Observations were repeated at the hours of lowest and highest temperatures. In addition, this study included soil penetration resistance and salinity determinations. Preliminary results indicate that soil temperature of the upper layer caused the most dynamic change in the sensor output. The ECa curves of the three soil textures tested had well defined distinctive characteristics. Final multivariate analysis is pending.
Resumo:
This paper proposes an alternative codification to solve the service restoration in electric power distribution networks using a SPEA2 multiobjective evolutionary algorithm, assuming the minimization of both the load not supplied and the number of switching operations involved in the restoration plan. Constrains as the line, power source and voltage drop limits in order to avoid the activation of protective devices are all included in the proposed algorithm. Experimental results have shown the convenience on considering these new representations in the sense of feasibility maintenance and also in the sense of better approximation to the Pareto set. ©2009 IEEE.
Resumo:
In this work the multiarea optimal power flow (OPF) problem is decoupled into areas creating a set of regional OPF subproblems. The objective is to solve the optimal dispatch of active and reactive power for a determined area, without interfering in the neighboring areas. The regional OPF subproblems are modeled as a large-scale nonlinear constrained optimization problem, with both continuous and discrete variables. Constraints violated are handled as objective functions of the problem. In this way the original problem is converted to a multiobjective optimization problem, and a specifically-designed multiobjective evolutionary algorithm is proposed for solving the regional OPF subproblems. The proposed approach has been examined and tested on the RTS-96 and IEEE 354-bus test systems. Good quality suboptimal solutions were obtained, proving the effectiveness and robustness of the proposed approach. ©2009 IEEE.
Resumo:
In this paper, a novel methodology to price the reactive power support ancillary service of Distributed Generators (DGs) with primary energy source uncertainty is shown. The proposed methodology provides the service pricing based on the Loss of Opportunity Costs (LOC) calculation. An algorithm is proposed to reduce the uncertainty present in these generators using Multiobjective Power Flows (MOPFs) implemented in multiple probabilistic scenarios through Monte Carlo Simulations (MCS), and modeling the time series associated with the generation of active power from DGs through Markov Chains (MC). © 2011 IEEE.
Resumo:
The aim of this work is the application of the Interior Point and Branch and Bound methods in multiobjective optimization models related to sugarcane harvest residual biomass. These methods showed their viability to help on choosing the sugarcane planting varieties, searching to optimize cost and energy balance of harvest residual biomass, which have conflitant objectives. These methods provide satisfactory results, with fair computing performance and reliable and consistent solutions to the analyzed models. © 2011 IEEE.
Resumo:
Problems as voltage increase at the end of a feeder, demand supply unbalance in a fault condition, power quality decline, increase of power losses, and reduction of reliability levels may occur if Distributed Generators (DGs) are not properly allocated. For this reason, researchers have been employed several solution techniques to solve the problem of optimal allocation of DGs. This work is focused on the ancillary service of reactive power support provided by DGs. The main objective is to price this service by determining the costs in which a DG incurs when it loses sales opportunity of active power, i.e, by determining the Loss of Opportunity Costs (LOC). The LOC will be determined for different allocation alternatives of DGs as a result of a multi-objective optimization process, aiming the minimization of losses in the lines of the system and costs of active power generation from DGs, and the maximization of the static voltage stability margin of the system. The effectiveness of the proposed methodology in improving the goals outlined was demonstrated using the IEEE 34 bus distribution test feeder with two DGs cosidered to be allocated. © 2011 IEEE.
Resumo:
Distributed Generation, microgrid technologies, two-way communication systems, and demand response programs are issues that are being studied in recent years within the concept of smart grids. At some level of enough penetration, the Distributed Generators (DGs) can provide benefits for sub-transmission and transmission systems through the so-called ancillary services. This work is focused on the ancillary service of reactive power support provided by DGs, specifically Wind Turbine Generators (WTGs), with high level of impact on transmission systems. The main objective of this work is to propose an optimization methodology to price this service by determining the costs in which a DG incurs when it loses sales opportunity of active power, i.e, by determining the Loss of Opportunity Costs (LOC). LOC occur when more reactive power is required than available, and the active power generation has to be reduced in order to increase the reactive power capacity. In the optimization process, three objectives are considered: active power generation costs of DGs, voltage stability margin of the system, and losses in the lines of the network. Uncertainties of WTGs are reduced solving multi-objective optimal power flows in multiple probabilistic scenarios constructed by Monte Carlo simulations, and modeling the time series associated with the active power generation of each WTG via Fuzzy Logic and Markov Chains. The proposed methodology was tested using the IEEE 14 bus test system with two WTGs installed. © 2011 IEEE.
Resumo:
This paper presents the generation of optimal trajectories by genetic algorithms (GA) for a planar robotic manipulator. The implemented GA considers a multi-objective function that minimizes the end-effector positioning error together with the joints angular displacement and it solves the inverse kinematics problem for the trajectory. Computer simulations results are presented to illustrate this implementation and show the efficiency of the used methodology producing soft trajectories with low computing cost. © 2011 Springer-Verlag Berlin Heidelberg.
Resumo:
The high active and reactive power level demanded by the distribution systems, the growth of consuming centers, and the long lines of the distribution systems result in voltage variations in the busses compromising the quality of energy supplied. To ensure the energy quality supplied in the distribution system short-term planning, some devices and actions are used to implement an effective control of voltage, reactive power, and power factor of the network. Among these devices and actions are the voltage regulators (VRs) and capacitor banks (CBs), as well as exchanging the conductors sizes of distribution lines. This paper presents a methodology based on the Non-Dominated Sorting Genetic Algorithm (NSGA-II) for optimized allocation of VRs, CBs, and exchange of conductors in radial distribution systems. The Multiobjective Genetic Algorithm (MGA) is aided by an inference process developed using fuzzy logic, which applies specialized knowledge to achieve the reduction of the search space for the allocation of CBs and VRs.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)