984 resultados para Mollusks, Fossil.
Resumo:
Source quantification of carbonaceous aerosols in the Chinese outflow regions still remains uncertain despite their high mass concentrations. Here, we unambiguously quantified fossil and nonfossil contributions to elemental carbon (EC) and organic carbon (OC) of total suspended particles (TSP) from a regional receptor site in the outflow of Northeast China using radiocarbon measurement. OC and EC concentrations were lower in summer, representing mainly marine air, than in other seasons, when air masses mostly traveled over continental regions in Mongolia and northeast China. The annual-mean contribution from fossil-fuel combustion to EC was 76 ± 11% (0.1−1.3 μg m−3). The remaining 24 ± 11% (0.03−0.42 μg m−3) was attributed to biomass burning, with slightly higher contribution in the cold period (∼31%) compared to the warm period (∼21%) because of enhanced emissions from regional biomass combustion sources in China. OC was generally dominated by nonfossil sources, with an annual average of 66 ± 11% (0.5−2.8 μg m−3), approximately half of which was apportioned to primary biomass burning sources (34 ± 6%). In winter, OC almost equally originated from primary OC (POC) emissions and secondary OC (SOC) formation from fossil fuel and biomass-burning sources. In contrast, summertime OC was dominated by primary biogenic emissions as well as secondary production from biogenic and biomass-burning sources, but fossil-derived SOC was the smallest contributor. Distinction of POC and SOC was performed using primary POC-to-EC emission ratios separated for fossil and nonfossil emissions.
Resumo:
We present a 47-year-long record of sea surface temperature (SST) derived from Sr/Ca and U/Ca analysis of a massive Porites coral which grew at ~4150 calendar years before present (B.P.) in Vanuatu (southwest tropical Pacific Ocean). Mean SST is similar in both the modern instrumental record and paleorecord, and both exhibit El Niño-Southern Oscillation (ENSO) frequency SST oscillations. However, several strong decadal-frequency cooling events and a marked modulation of the seasonal SST cycle, with power at both ENSO and decadal frequencies, are observed in the paleorecord, which are unprecedented in the modern record.
Resumo:
In the green Oligocene clay of Krizanovice (former Krzyzanowicz) the author found numerous black nodules. In the 3-4 centimeter thick black crust of a particular specimen the concentration in MnO2 is evaluated at 46.6% MnO2. The determination was done using the Volhard's method (precipitation of Fe by ZnO and titration with KMnO4). Only the dissoleved part in HCL was analysed. The non soluble residue was essentially a silica precipitate in the form of many gray flakes. The specific gravity of the crust was evaluated at 3.8. In the internal yellow core the amount of manganese is about 2.39% MnO2. Due to the light color it is judged to probably be in the form of Mn2O3.
Resumo:
Fossil corals are unique archives of past seasonal climate variability, providing vital information about seasonal climate phenomena such as ENSO and monsoons. However, submarine diagenetic processes can potentially obscure the original climate signals and lead to false interpretations. Here we demonstrate the potential of laser ablation ICP-MS to rapidly detect secondary aragonite precipitates in fossil Porites colonies recovered by Integrated Ocean Drilling Program (IODP) Expedition 310 from submerged deglacial reefs off Tahiti. High resolution (100 µm) measurements of coralline B/Ca, Mg/Ca, S/Ca, and U/Ca ratios are used to distinguish areas of pristine skeleton from those afflicted with secondary aragonite. Measurements of coralline Sr/Ca, U/Ca and oxygen isotope ratios, from areas identified as pristine, reveal that the seasonal range of sea surface temperature in the tropical south Pacific during the last deglaciation (14.7 and 11 ka) was similar to that of today.