939 resultados para Molecular mechanism


Relevância:

60.00% 60.00%

Publicador:

Resumo:

To investigate the molecular mechanism for stereospecific binding of agonists to beta 2-adrenergic receptors we used receptor models to identify potential binding sites for the beta-OH-group of the ligand, which defines the chiral center. Ser-165, located in transmembrane helix IV, and Asn-293, situated in the upper half of transmembrane helix VI, were identified as potential binding sites. Mutation of Ser-165 to Ala did not change the binding of either isoproterenol isomer as revealed after transient expression in human embryonic kidney (HEK)-293 cells. In contrast, a receptor mutant in which Asn-293 was replaced by Leu showed substantial loss of stereospecific isoproterenol binding. Adenylyl cyclase stimulation by this mutant after stable expression in CHO cells confirmed the substantial loss of stereospecificity for isoproterenol. In a series of agonists the loss of affinity in the Leu-293 mutant receptor was strongly correlated with the intrinsic activity of the compounds. Full agonists showed a 10-30-fold affinity loss, whereas partial agonists had almost the same affinity for both receptors. Stereospecific recognition of antagonists was unaltered in the Leu-293 mutant receptor. These data indicate a relationship between stereospecificity and intrinsic activity of agonists and suggest that Asn-293 is important for both properties of the agonist-receptor interaction.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

In addition to its well known sedative and teratogenic effects, thalidomide also possesses potent immunomodulatory and antiinflammatory activities, being most effective against leprosy and chronic graft-versus-host disease. The immunomodulatory activity of thalidomide has been ascribed to the selective inhibition of tumor necrosis factor alpha from monocytes. The molecular mechanism for the immunomodulatory effect of thalidomide remains unknown. To elucidate this mechanism, we synthesized an active photoaffinity label of thalidomide as a probe to identify the molecular target of the drug. Using the probe, we specifically labeled a pair of proteins of 43-45 kDa with high acidity from bovine thymus extract. Purification of these proteins and partial peptide sequence determination revealed them to be alpha1-acid glycoprotein (AGP). We show that the binding of thalidomide photoaffinity label to authentic human AGP is competed with both thalidomide and the nonradioactive photoaffinity label at concentrations comparable to those required for inhibition of production of tumor necrosis factor alpha from human monocytes, suggesting that AGP may be involved in the immunomodulatory activity of thalidomide.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

TRAF1 and TRAF2 form an oligomeric complex that associates with the cytoplasmic domains of various members of the tumor necrosis factor (TNF) receptor superfamily. TRAF2 action is required for activation of the transcription factor NF-kappaB triggered by TNF and the CD40 ligand. Here we show that TRAF1 and TRAF2 interact with A20, a zinc finger protein, whose expression is induced by agents that activate NF-kappaB. Mutational analysis revealed that the N-terminal half of A20 interacts with the conserved C-terminal TRAF domain of TRAF1 and TRAF2. In cotransfection experiments, A20 blocked TRAF2-mediated NF-kappaB activation. A20 also inhibited TNF and IL-1-induced NF-kappaB activation, suggesting that it may inhibit NF-kappaB activation signaled by diverse stimuli. The ability of A20 to block NF-kappaB activation was mapped to its C-terminal zinc finger domain. Thus, A20 is composed of two functionally distinct domains, an N-terminal TRAF binding domain that recruits A20 to the TRAF2-TRAF1 complex and a C-terminal domain that mediates inhibition of NF-kappaB activation. Our findings suggest a possible molecular mechanism that could explain A20's ability to negatively regulate its own TNF-inducible expression.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The x-ray crystal structures of the sulfide oxidase antibody 28B4 and of antibody 28B4 complexed with hapten have been solved at 2.2-angstrom and 1.9-angstrom resolution, respectively. To our knowledge, these structures are the highest resolution catalytic antibody structures to date and provide insight into the molecular mechanism of this antibody-catalyzed monooxygenation reaction. Specifically, the data suggest that entropic restriction plays a fundamental role in catalysis through the precise alignment of the thioether substrate and oxidant. The antibody active site also stabilizes developing charge on both sulfur and periodate in the transition state via cation-pi and electrostatic interactions, respectively. In addition to demonstrating that the active site of antibody 28B4 does indeed reflect the mechanistic information programmed in the aminophosphonic acid hapten, these high-resolution structures provide a basis for enhancing turnover rates through mutagenesis and improved hapten design.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Infection of cells with picornaviruses, such as poliovirus and encephalomyocarditis virus (EMCV), causes a shutoff of host protein synthesis. The molecular mechanism of the shutoff has been partly elucidated for poliovirus but not for EMCV. Translation initiation in eukaryotes is facilitated by the mRNA 5' cap structure to which the multisubunit translation initiation factor eIF4F binds to promote ribosome binding. Picornaviruses use a mechanism for the translation of their RNA that is independent of the cap structure. Poliovirus infection engenders the cleavage of the eIF4G (formerly p220) component of eIF4F and renders this complex inactive for cap-dependent translation. In contrast, EMCV infection does not result in eIF4G cleavage. Here, we report that both EMCV and poliovirus activate a translational repressor, 4E-BP1, that inhibits cap-dependent translation by binding to the cap-binding subunit eIF4E. Binding of eIF4E occurs only to the underphosphorylated form of 4E-BP1, and this interaction is highly regulated in cells. We show that 4E-BP1 becomes dephosphorylated upon infection with both EMCV and poliovirus. Dephosphorylation of 4E-BP1 temporally coincides with the shutoff of protein synthesis by EMCV but lags behind the shutoff and eIF4G cleavage in poliovirus-infected cells. Dephosphorylation of 4E-BP1 by specifically inhibiting cap-dependent translation may be the major cause of the shutoff phenomenon in EMCV-infected cells.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Although the interaction of proton-conducting ionophores (protonophores) with photosynthetic electron transport has been extensively studied during the past decade, the mode of action of protonophores remained uncertain. For a better understanding of the molecular mechanism of the action of protonophores, the introduction of chemically new types of molecules will be required. In this work, we demonstrate that acridones (9-azaanthracene-10-ones) completely fulfill this requirement. At low concentrations of acridones, the thermoluminescence bands at +20 degrees C and +10 degrees C were strongly inhibited, while normal electron transport activity was retained. This indicates that the concentrations of S2 and S3 states involved in the generation of these bands are reduced. At higher concentrations, an increased activity of electron transport was observed, which is attributed to the typical uncoupler effect of protonophores. Indeed, acridones accelerate the decay of the electrochromic absorbance change at 515 nm and also inhibit the generation of the transmembrane proton gradient, measured as an absorbance transient of neutral red. Variable fluorescence induction was quenched even at low concentrations of acridones but was restored by either a long-term illumination or high light intensity. Acridones, similarly to other protonophores, promoted the autooxidation of the high-potential form of cytochrome b559 and partially converted it to lower potential forms. These results suggest that acridones, acting as typical protonophores, uncouple electron transport, accelerate the deactivation of the S2 and S3 states on the donor side, and facilitate the oxidation of cytochrome b559 on the acceptor side of photosystem II.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Kinesin is a molecular motor that transports organelles along microtubules. This enzyme has two identical 7-nm-long motor domains, which it uses to move between consecutive tubulin binding sites spaced 8 nm apart along a microtubular protofilament. The molecular mechanism of this movement, which remains to be elucidated, may be common to all families of motor proteins. In this study, a high-resolution optical-trap microscope was used to measure directly the magnitude of abrupt displacements produced by a single kinesin molecule transporting a microscopic bead. The distribution of magnitudes reveals that kinesin not only undergoes discrete 8-nm movements, in agreement with previous work [Svoboda, K., Schmidt, C. F., Schnapp, B. J. & Block, S.M. (1993) Nature (London) 365, 721-727], but also frequently exhibits smaller movements of about 5 nm. A possible explanation for these unexpected smaller movements is that kinesin's movement from one dimer to the next along a protofilament involves at least two distinct events in the mechanical cycle.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The mutagenic activity of the major DNA adduct formed by the liver carcinogen aflatoxin B1 (AFB1) was investigated in vivo. An oligonucleotide containing a single 8,9-dihydro-8-(N7-guanyl)-9-hydroxyaflatoxin B1 (AFB1-N7-Gua) adduct was inserted into the single-stranded genome of bacteriophage M13. Replication in SOS-induced Escherichia coli yielded a mutation frequency for AFB1-N7-Gua of 4%. The predominant mutation was G --> T, identical to the principal mutation in human liver tumors believed to be induced by aflatoxin. The G --> T mutations of AFB1-N7-Gua, unlike those (if the AFB1-N7-Gua-derived apurinic site, were much more strongly dependent on MucAB than UmuDC, a pattern matching that in intact cells treated with the toxin. It is concluded that the AFB1-N7-Gua adduct, and not the apurinic site, has genetic requirements for mutagenesis that best explain mutations in aflatoxin-treated cells. While most mutations were targeted to the site of the lesion, a significant fraction (13%) occurred at the base 5' to the modified guanine. In contrast, the apurinic site-containing genome gave rise only to targeted mutations. The mutational asymmetry observed for AFB1-N7-Gua is consistent with structural models indicating that the aflatoxin moiety of the aflatoxin guanine adduct is covalently intercalated on the 5' face of the guanine residue. These results suggest a molecular mechanism that could explain an important step in the carcinogenicity of aflatoxin B1.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

V(D)J rearrangement is the molecular mechanism by which an almost infinite array of specific immune receptors are generated. Defects in this process result in profound immunodeficiency as is the case in the C.B-17 SCID mouse or in RAG-1 (recombination-activating gene 1) or RAG-2 deficient mice. It has recently become clear that the V(D)J recombinase most likely consists of both lymphoid-specific factors and ubiquitously expressed components of the DNA double-strand break repair pathway. The deficit in SCID mice is in a factor that is required for both of these pathways. In this report, we show that the factor defective in the autosomal recessive severe combined immunodeficiency of Arabian foals is required for (i) V(D)J recombination, (ii) resistance to ionizing radiation, and (iii) DNA-dependent protein kinase activity.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Ionotropic receptors for gamma-aminobutyric acid (GABA) are important to inhibitory neurotransmission in the mammalian retina, mediating GABAA and GABAC responses. In many species, these responses are blocked by the convulsant picrotoxinin (PTX), although the mechanism of block is not fully understood. In contrast, GABAC responses in the rat retina are extremely resistant to PTX. We hypothesized that this difference could be explained by molecular characterization of the receptors underlying the GABAC response. Here we report the cloning of two rat GABA receptor subunits, designated r rho 1 and r rho 2 after their previously identified human homologues. When coexpressed in Xenopus oocytes, r rho 1/r rho 2 heteromeric receptors mimicked PTX-resistant GABAC responses of the rat retina. PTX resistance is apparently conferred in native heteromeric receptors by r rho 2 subunits since homomeric r rho 1 receptors were sensitive to PTX; r rho 2 subunits alone were unable to form functional homomeric receptors. Site-directed mutagenesis confirmed that a single amino acid residue in the second membrane-spanning region (a methionine in r rho 2 in place of a threonine in r rho 1) is the predominant determinant of PTX resistance in the rat receptor. This study reveals not only the molecular mechanism underlying PTX blockade of GABA receptors but also the heteromeric nature of native receptors in the rat retina that underlie the PTX-resistant GABAC response.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Germline loss-of-function mutations at the Wilms tumor (WT) suppressor locus WT1 are associated with a predisposition to WTs and mild genital system anomalies. In contrast, germ-line missense mutations within the WT1 gene encoding the DNA-binding domain often yield a more severe phenotype consisting of WT, sexual ambiguity, and renal nephropathy. In this report, we demonstrate that the products of mutant alleles that impair DNA recognition can antagonize WT1-mediated transcriptional repression. We demonstrate that WT1 can self-associate in vitro and in vivo and that the responsible domain maps to the amino-terminal region of the protein. Oligomers of full-length protein form less efficiently or produce less stable complexes than oligomers between truncated polypeptides and full-length protein. Our data suggest a molecular mechanism to explain how WT1 mutations may act in deregulating cellular proliferation and differentiation.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The human hepatitis B virus (HBV) HBx protein is a small transcriptional activator that is essential for virus infection. HBx is thought to be involved in viral hepatocarcinogenesis because it promotes tumorigenesis in transgenic mice. HBx activates the RAS-RAF-mitogen-activated protein (MAP) kinase signaling cascade, through which it activates transcription factors AP-1 and NF-kappa B, and stimulates cell DNA synthesis. We show that HBx stimulates cell cycle progression, shortening the emergence of cells from quiescence (G0) and entry into S phase by at least 12 h, and accelerating transit through checkpoint controls at G0/G1 and G2/M. Compared with serum stimulation, HBx was found to strongly increase the rate and level of activation of the cyclin-dependent kinases CDK2 and CDC2, and their respective active association with cyclins E and A or cyclin B. HBx is also shown to override or greatly reduce serum dependence for cell cycle activation. Both HBx and serum were found to require activation of RAS to stimulate cell cycling, but only HBx could shorten checkpoint intervals. HBx therefore stimulates cell proliferation by activating RAS and a second unknown effector, which may be related to its reported ability to induce prolonged activation of JUN or to interact with cellular p53 protein. These data suggest a molecular mechanism by which HBx likely contributes to viral carcinogenesis. By deregulating checkpoint controls, HBx could participate in the selection of cells that are genetically unstable, some of which would accumulate unrepaired transforming mutations.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Thyroid gland function is regulated by the hypothalamic-pituitary axis via the secretion of TSH, according to environmental, developmental, and circadian stimuli. TSH modulates both the secretion of thyroid hormone and gland trophism through interaction with a specific guanine nucleotide-binding protein-coupled receptor (TSH receptor; TSH-R), which elicits the activation of the cAMP-dependent signaling pathway. After TSH stimulation, the levels of TSH-R RNA are known to decrease dramatically within a few hours. This phenomenon ultimately leads to homologous long-term desensitization of the TSH-R. Here we show that TSH drives the induction of the inducible cAMP early repressor (ICER) isoform of the cAMP response element (CRE) modulator gene both in rat thyroid gland and in the differentiated thyroid cell line FRTL-5. The kinetics of ICER protein induction mirrors the down-regulation of TSH-R mRNA. ICER binds to a CRE-like sequence in the TSH-R promoter and represses its expression. Thus, ICER induction by TSH in the thyroid gland represents a paradigm of the molecular mechanism by which pituitary hormones elicit homologous long-term desensitization.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Evolutionary selection of sequences is studied with a knowledge-based Hamiltonian to find the design principle for folding to a model protein structure. With sequences selected by naive energy minimization, the model structure tends to be unstable and the folding ability is low. Sequences with high folding ability have only the low-lying energy minimum but also an energy landscape which is similar to that found for the native sequence over a wide region of the conformation space. Though there is a large fluctuation in foldable sequences, the hydrophobicity pattern and the glycine locations are preserved among them. Implications of the design principle for the molecular mechanism of folding are discussed.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Vascular endothelial cells, serving as a barrier between vessel and blood, are exposed to shear stress in the body. Although endothelial responses to shear stress are important in physiological adaption to the hemodynamic environments, they can also contribute to pathological conditions--e.g., in atherosclerosis and reperfusion injury. We have previously shown that shear stress mediates a biphasic response of monocyte chemotactic protein 1 (MCP-1) gene expression in vascular endothelial cells and that the regulation is at the transcriptional level. These observations led us to functionally analyze the 550-bp promoter region of the MCP-1-encoding gene to define the cis element responding to shear stress. The shear stress/luciferase assay on the deletion constructs revealed that a 38-bp segment (-53 to -90 bp relative to the transcription initiation site) containing two divergent phorbol ester "12-O-tetradecanoylphorbol 13-acetate" (TPA)-responsive elements (TRE) is critical for shear inducibility. Site-specific mutations on these two sites further demonstrated that the proximal one (TGACTCC) but not the distal one (TCACTCA) was shear-responsive. Shear inducibility was lost after the mutation or deletion of the proximal site. This molecular mechanism of shear inducibility of the MCP-1 gene was functional in both the epithelial-like HeLa cells and bovine aortic endothelial cells (BAEC). In a construct with four copies of the TRE consensus sequences TGACTACA followed by the rat prolactin minimal promoter and luciferase gene, shear stress induced the reporter activities by 35-fold and 7-fold in HeLa cells and BAEC, respectively. The application of shear stress on BAEC also induced a rapid and transient phosphorylation of mitogen-activated protein kinases. Pretreatment of BAEC with TPA attenuated the shear-induced mitogen-activated protein kinase phosphorylation, suggesting that shear stress and TPA share a similar signal transduction pathway in activating cells. The present study provides a molecular basis for the transient induction of MCP-1 gene by shear stress.