993 resultados para Models Geometric


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Population dynamics have been attracting interest since many years. Among the considered models, the Richards’ equations remain one of the most popular to describe biological growth processes. On the other hand, Allee effect is currently a major focus of ecological research, which occurs when positive density dependence dominates at low densities. In this chapter, we propose the dynamical study of classes of functions based on Richards’ models describing the existence or not of Allee effect. We investigate bifurcation structures in generalized Richards’ functions and we look for the conditions in the (β, r) parameter plane for the existence of a weak Allee effect region. We show that the existence of this region is related with the existence of a dovetail structure. When the Allee limit varies, the weak Allee effect region disappears when the dovetail structure also disappears. Consequently, we deduce the transition from the weak Allee effect to no Allee effect to this family of functions. To support our analysis, we present fold and flip bifurcation curves and numerical simulations of several bifurcation diagrams.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this paper, motivated by the interest and relevance of the study of tumor growth models, a central point of our investigation is the study of the chaotic dynamics and the bifurcation structure of Weibull-Gompertz-Fréchet's functions: a class of continuousdefined one-dimensional maps. Using symbolic dynamics techniques and iteration theory, we established that depending on the properties of this class of functions in a neighborhood of a bifurcation point PBB, in a two-dimensional parameter space, there exists an order regarding how the infinite number of periodic orbits are born: the Sharkovsky ordering. Consequently, the corresponding symbolic sequences follow the usual unimodal kneading sequences in the topological ordered tree. We verified that under some sufficient conditions, Weibull-Gompertz-Fréchet's functions have a particular bifurcation structure: a big bang bifurcation point PBB. This fractal bifurcations structure is of the so-called "box-within-a-box" type, associated to a boxe ω1, where an infinite number of bifurcation curves issues from. This analysis is done making use of fold and flip bifurcation curves and symbolic dynamics techniques. The present paper is an original contribution in the framework of the big bang bifurcation analysis for continuous maps.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This work concerns dynamics and bifurcations properties of a new class of continuous-defined one-dimensional maps: Tsoularis-Wallace's functions. This family of functions naturally incorporates a major focus of ecological research: the Allee effect. We provide a necessary condition for the occurrence of this phenomenon of extinction. To establish this result we introduce the notions of Allee's functions, Allee's effect region and Allee's bifurcation curve. Another central point of our investigation is the study of bifurcation structures for this class of functions, in a three-dimensional parameter space. We verified that under some sufficient conditions, Tsoularis-Wallace's functions have particular bifurcation structures: the big bang and the double big bang bifurcations of the so-called "box-within-a-box" type. The double big bang bifurcations are related to the existence of flip codimension-2 points. Moreover, it is verified that these bifurcation cascades converge to different big bang bifurcation curves, where for the corresponding parameter values are associated distinct kinds of boxes. This work contributes to clarify the big bang bifurcation analysis for continuous maps and understand their relationship with explosion birth and extinction phenomena.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The concepts and instruments required for the teaching and learning of geometric optics are introduced in the didactic processwithout a proper didactic transposition. This claim is secured by the ample evidence of both wide- and deep-rooted alternative concepts on the topic. Didactic transposition is a theory that comes from a reflection on the teaching and learning process in mathematics but has been used in other disciplinary fields. It will be used in this work in order to clear up the main obstacles in the teachinglearning process of geometric optics. We proceed to argue that since Newton’s approach to optics, in his Book I of Opticks, is independent of the corpuscular or undulatory nature of light, it is the most suitable for a constructivist learning environment. However, Newton’s theory must be subject to a proper didactic transposition to help overcome the referred alternative concepts. Then is described our didactic transposition in order to create knowledge to be taught using a dialogical process between students’ previous knowledge, history of optics and the desired outcomes on geometrical optics in an elementary pre-service teacher training course. Finally, we use the scheme-facet structure of knowledge both to analyse and discuss our results as well as to illuminate shortcomings that must be addressed in our next stage of the inquiry.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Geociências, Museu Nac. Hist. Nat. Univ. Lisboa, nº 2, 35-84

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Os critérios neoclássicos de investimento ignoram três características fundamentais, presentes na grande maioria dos projetos de investimento produtivos, sendo elas a Flexibilidade, a Incerteza e a Irreversibilidade. Face a essas características, a abordagem das Opções Reais parece ser a única abordagem competente quando comparada com critérios como Payback, Taxa Interna de Rendibilidade ou Valor Atual Líquido. Com vista a confirmar estas afirmações, aplica-se a uma situação simulada o modelo de uma variável estocástica, que segue um processo estocástico, mais concretamente um Geometric Brownian Motion com drift, apresentado por Dixit e Pindyck (1994), modelo este que a par dos modelos de duas variáveis estocásticas, como são exemplos os desenvolvidos por McDonald e Siegel (1986) e Adkins e Paxson (2011), constituem aquele que é, tanto quanto sabemos, o “estado da arte” da temática. Com base nesta aplicação recolhemos evidências de que, de facto, através da consideração de oportunidades de investimento perspetivadas em Opções Reais diminuímos a probabilidade de incorrer em decisões de investimento que não são, de acordo com este critério, ótimas para maximizar o valor do projeto em questão.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Dissertação apresentada para a obtenção do Grau de Mestre em Genética Molecular e Biomedicina, pela Universidade Nova de Lisboa, Faculdade de Ciências e Tecnologia

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Dissertação apresentada na Faculdade de Ciências e Tecnologia da Universidade Nova de Lisboa para obtenção do grau de Mestre em Engenharia Electrotécnica e de Computadores

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Dissertation presented to obtain the PhD degree in Biology/Molecular Biology by Universidade Nova de Lisboa, Instituto de Tecnologia Química e Biológica

Relevância:

20.00% 20.00%

Publicador:

Resumo:

European Journal of Operational Research, nº 73 (1994)

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Dissertation to obtain the degree of Doctor in Electrical and Computer Engineering, specialization of Collaborative Networks

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Dissertação para obtenção do Grau de Mestre em Matemática e Aplicações Especialização em Actuariado, Estatística e Investigação Operacional