918 resultados para Model Based Testing
Resumo:
Classical regression methods take vectors as covariates and estimate the corresponding vectors of regression parameters. When addressing regression problems on covariates of more complex form such as multi-dimensional arrays (i.e. tensors), traditional computational models can be severely compromised by ultrahigh dimensionality as well as complex structure. By exploiting the special structure of tensor covariates, the tensor regression model provides a promising solution to reduce the model’s dimensionality to a manageable level, thus leading to efficient estimation. Most of the existing tensor-based methods independently estimate each individual regression problem based on tensor decomposition which allows the simultaneous projections of an input tensor to more than one direction along each mode. As a matter of fact, multi-dimensional data are collected under the same or very similar conditions, so that data share some common latent components but can also have their own independent parameters for each regression task. Therefore, it is beneficial to analyse regression parameters among all the regressions in a linked way. In this paper, we propose a tensor regression model based on Tucker Decomposition, which identifies not only the common components of parameters across all the regression tasks, but also independent factors contributing to each particular regression task simultaneously. Under this paradigm, the number of independent parameters along each mode is constrained by a sparsity-preserving regulariser. Linked multiway parameter analysis and sparsity modeling further reduce the total number of parameters, with lower memory cost than their tensor-based counterparts. The effectiveness of the new method is demonstrated on real data sets.
Resumo:
In this paper we deal with a Bayesian analysis for right-censored survival data suitable for populations with a cure rate. We consider a cure rate model based on the negative binomial distribution, encompassing as a special case the promotion time cure model. Bayesian analysis is based on Markov chain Monte Carlo (MCMC) methods. We also present some discussion on model selection and an illustration with a real dataset.
Resumo:
In interval-censored survival data, the event of interest is not observed exactly but is only known to occur within some time interval. Such data appear very frequently. In this paper, we are concerned only with parametric forms, and so a location-scale regression model based on the exponentiated Weibull distribution is proposed for modeling interval-censored data. We show that the proposed log-exponentiated Weibull regression model for interval-censored data represents a parametric family of models that include other regression models that are broadly used in lifetime data analysis. Assuming the use of interval-censored data, we employ a frequentist analysis, a jackknife estimator, a parametric bootstrap and a Bayesian analysis for the parameters of the proposed model. We derive the appropriate matrices for assessing local influences on the parameter estimates under different perturbation schemes and present some ways to assess global influences. Furthermore, for different parameter settings, sample sizes and censoring percentages, various simulations are performed; in addition, the empirical distribution of some modified residuals are displayed and compared with the standard normal distribution. These studies suggest that the residual analysis usually performed in normal linear regression models can be straightforwardly extended to a modified deviance residual in log-exponentiated Weibull regression models for interval-censored data. (C) 2009 Elsevier B.V. All rights reserved.
Resumo:
Prediction of random effects is an important problem with expanding applications. In the simplest context, the problem corresponds to prediction of the latent value (the mean) of a realized cluster selected via two-stage sampling. Recently, Stanek and Singer [Predicting random effects from finite population clustered samples with response error. J. Amer. Statist. Assoc. 99, 119-130] developed best linear unbiased predictors (BLUP) under a finite population mixed model that outperform BLUPs from mixed models and superpopulation models. Their setup, however, does not allow for unequally sized clusters. To overcome this drawback, we consider an expanded finite population mixed model based on a larger set of random variables that span a higher dimensional space than those typically applied to such problems. We show that BLUPs for linear combinations of the realized cluster means derived under such a model have considerably smaller mean squared error (MSE) than those obtained from mixed models, superpopulation models, and finite population mixed models. We motivate our general approach by an example developed for two-stage cluster sampling and show that it faithfully captures the stochastic aspects of sampling in the problem. We also consider simulation studies to illustrate the increased accuracy of the BLUP obtained under the expanded finite population mixed model. (C) 2007 Elsevier B.V. All rights reserved.
Resumo:
A procedure for characterizing global uncertainty of a rainfall-runoff simulation model based on using grey numbers is presented. By using the grey numbers technique the uncertainty is characterized by an interval; once the parameters of the rainfall-runoff model have been properly defined as grey numbers, by using the grey mathematics and functions it is possible to obtain simulated discharges in the form of grey numbers whose envelope defines a band which represents the vagueness/uncertainty associated with the simulated variable. The grey numbers representing the model parameters are estimated in such a way that the band obtained from the envelope of simulated grey discharges includes an assigned percentage of observed discharge values and is at the same time as narrow as possible. The approach is applied to a real case study highlighting that a rigorous application of the procedure for direct simulation through the rainfall-runoff model with grey parameters involves long computational times. However, these times can be significantly reduced using a simplified computing procedure with minimal approximations in the quantification of the grey numbers representing the simulated discharges. Relying on this simplified procedure, the conceptual rainfall-runoff grey model is thus calibrated and the uncertainty bands obtained both downstream of the calibration process and downstream of the validation process are compared with those obtained by using a well-established approach, like the GLUE approach, for characterizing uncertainty. The results of the comparison show that the proposed approach may represent a valid tool for characterizing the global uncertainty associable with the output of a rainfall-runoff simulation model.
Resumo:
Este estudo buscou verificar a influencia dos agentes da cadeia de suprimentos no desempenho do desenvolvimento de novos produtos quando os agentes são analisados em conjunto. A motivação desta pesquisa veio de estudos que alertaram para a consideração da integração da cadeia de suprimentos como um constructo multidimensional, englobando o envolvimento da manufatura, fornecedores e clientes no desenvolvimento de novos produtos; e devido à falta de informação sobre as influencias individuais destes agentes no desenvolvimento de novos produtos. Sob essas considerações, buscou-se construir um modelo analítico baseado na Teoria do Capital Social e Capacidade Absortiva, construir hipóteses a partir da revisão da literatura e conectar constructos como cooperação, envolvimento do fornecedor no desenvolvimento de novos produtos (DNP), envolvimento do cliente no DNP, envolvimento da manufatura no DNP, antecipação de novas tecnologias, melhoria contínua, desempenho operacional do DNP, desempenho de mercado do NPD e desempenho de negócio do DNP. Para testar as hipóteses foram consideradas três variáveis moderadoras, tais como turbulência ambiental (baixa, média e alta), indústria (eletrônicos, maquinários e equipamentos de transporte) e localização (América, Europa e Ásia). Para testar o modelo foram usados dados do projeto High Performance Manufacturing que contém 339 empresas das indústrias de eletrônicos, maquinários e equipamentos de transporte, localizadas em onze países. As hipóteses foram testadas por meio da Análise Fatorial Confirmatória (AFC) incluindo a moderação muti-grupo para as três variáveis moderadoras mencionadas anteriormente. Os principais resultados apontaram que as hipóteses relacionadas com cooperação foram confirmadas em ambientes de média turbulência, enquanto as hipóteses relacionadas ao desempenho no DNP foram confirmadas em ambientes de baixa turbulência ambiental e em países asiáticos. Adicionalmente, sob as mesmas condições, fornecedores, clientes e manufatura influenciam diferentemente no desempenho de novos produtos. Assim, o envolvimento de fornecedores influencia diretamente no desempenho operacional e indiretamente no desempenho de mercado e de negócio em baixos níveis de turbulência ambiental, na indústria de equipamentos de transporte em países da Americanos e Europeus. De igual forma, o envolvimento do cliente influenciou diretamente no desempenho operacional e indiretamente no desempenho de mercado e do negócio em médio nível de turbulência ambiental, na indústria de maquinários e em países Asiáticos. Fornecedores e clientes não influenciam diretamente no desempenho de mercado e do negócio e não influenciam indiretamente no desempenho operacional. O envolvimento da manufatura não influenciou nenhum tipo de desempenho do desenvolvimento de novos produtos em todos os cenários testados.
Resumo:
A simple model based on, the maximum energy that an athlete can produce in a small time interval is used to describe the high and long jump. Conservation of angular momentum is used to explain why an athlete should, run horizontally to perform a vertical jump. Our results agree with world records. (c) 2005 American Association of Physics Teachers.
Resumo:
A quantificação do impacto das práticas de preparo sobre as perdas de carbono do solo é dependente da habilidade de se descrever a variabilidade temporal da emissão de CO2 do solo após preparo. Tem sido sugerido que as grandes quantidades de CO2 emitido após o preparo do solo podem servir como um indicador das modificações nos estoques de carbono do solo em longo termo. Neste trabalho é apresentado um modelo de duas partes baseado na temperatura e na umidade do solo e que inclui um termo exponencial decrescente do tempo que é eficiente no ajuste das emissões intermediárias após preparo: arado de disco seguido de uma passagem com a grade niveladora (convencional) e escarificador de arrasto seguido da passagem com rolo destorroador (reduzido). As emissões após o preparo do solo são descritas utilizando-se estimativa não linear com um coeficiente de determinação (R²) tão alto quanto 0.98 após preparo reduzido. Os resultados indicam que nas previsões da emissão de CO2 após o preparo do solo é importante considerar um termo exponencial decrescente no tempo após preparo.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
This paper shows the insertion of corona effect in a transmission line model based on lumped elements. The development is performed considering a frequency-dependent line representation by cascade of pi sections and state equations. Hence, the detailed profile of currents and voltages along the line, described from a non-homogeneous system of differential equations, can be obtained directly in time domain applying numerical or analytic solution integration methods. The corona discharge model is also based on lumped elements and is implemented from the well-know Skilling-Umoto Model.
Resumo:
This paper presents a non-model based technique to detect, locate, and characterize structural damage by combining the impedance-based structural health monitoring technique with an artificial neural network. The impedance-based structural health monitoring technique, which utilizes the electromechanical coupling property of piezoelectric materials, has shown engineering feasibility in a variety of practical field applications. Relying on high frequency structural excitations (typically>30 kHz), this technique is very sensitive to minor structural changes in the near field of the piezoelectric sensors. In order to quantitatively assess the state of structures, two sets of artificial neural networks, which utilize measured electrical impedance signals for input patterns, were developed. By employing high frequency ranges and by incorporating neural network features, this technique is able to detect the damage in its early stage and to estimate the nature of damage without prior knowledge of the model of structures. The paper concludes with an experimental example, an investigation on a massive quarter scale model of a steel bridge section, in order to verify the performance of this proposed methodology.
Resumo:
We derive constraints on a simple quintessential inflation model, based on a spontaneously broken Phi(4) theory, imposed by the Wilkinson Microwave Anisotropy Probe three-year data (WMAP3) and by galaxy clustering results from the Sloan Digital Sky Survey (SDSS). We find that the scale of symmetry breaking must be larger than about 3 Planck masses in order for inflation to generate acceptable values of the scalar spectral index and of the tensor-to-scalar ratio. We also show that the resulting quintessence equation of state can evolve rapidly at recent times and hence can potentially be distinguished from a simple cosmological constant in this parameter regime.
Resumo:
The symmetry structure of the non-Abelian affine Toda model based on the coset SL(3)/SL(2) circle times U(1) is studied. It is shown that the model possess non-Abelian Noether symmetry closing into a q-deformed SL(2) circle times U(1) algebra. Specific two-vertex soliton solutions are constructed.
Resumo:
We present an analytic study of the finite size effects in sine-Gordon model, based on the semi-classical quantization of an appropriate kink background defined on a cylindrical geometry. The quasi-periodic kink is realized as an elliptic function with its real period related to the size of the system. The stability equation for the small quantum fluctuations around this classical background is of Lame type and the corresponding energy eigenvalues are selected inside the allowed bands by imposing periodic boundary conditions. We derive analytical expressions for the ground state and excited states scaling functions, which provide an explicit description of the flow between the IR and UV regimes of the model. Finally, the semiclassical form factors and two-point functions of the basic field and of the energy operator are obtained, completing the semiclassical quantization of the sine-Gordon model on the cylinder. (C) 2004 Elsevier B.V. All rights reserved.