926 resultados para Mitochondrial DNA replication
Resumo:
Checkpoints maintain the order and fidelity of the eukaryotic cell cycle, and defects in checkpoints contribute to genetic instability and cancer. Much of our current understanding of checkpoints comes from genetic studies conducted in yeast. In the fission yeast Schizosaccharomyces pombe (Sp), SpRad3 is an essential component of both the DNA damage and DNA replication checkpoints. The SpChk1 and SpCds1 protein kinases function downstream of SpRad3. SpChk1 is an effector of the DNA damage checkpoint and, in the absence of SpCds1, serves an essential function in the DNA replication checkpoint. SpCds1 functions in the DNA replication checkpoint and in the S phase DNA damage checkpoint. Human homologs of both SpRad3 and SpChk1 but not SpCds1 have been identified. Here we report the identification of a human cDNA encoding a protein (designated HuCds1) that shares sequence, structural, and functional similarity to SpCds1. HuCds1 was modified by phosphorylation and activated in response to ionizing radiation. It was also modified in response to hydroxyurea treatment. Functional ATM protein was required for HuCds1 modification after ionizing radiation but not after hydroxyurea treatment. Like its fission yeast counterpart, human Cds1 phosphorylated Cdc25C to promote the binding of 14-3-3 proteins. These findings suggest that the checkpoint function of HuCds1 is conserved in yeast and mammals.
Resumo:
Integration of transgenic DNA into the plant genome was investigated in 13 transgenic oat (Avena sativa L.) lines produced using microprojectile bombardment with one or two cotransformed plasmids. In all transformation events, the transgenic DNA integrated into the plant genome consisted of intact transgene copies that were accompanied by multiple, rearranged, and/or truncated transgene fragments. All fragments of transgenic DNA cosegregated, indicating that they were integrated at single gene loci. Analysis of the structure of the transgenic loci indicated that the transgenic DNA was interspersed by the host genomic DNA. The number of insertions of transgenic DNA within the transgene loci varied from 2 to 12 among the 13 lines. Restriction endonucleases that do not cleave the introduced plasmids produced restriction fragments ranging from 3.6 to about 60 kb in length hybridizing to a probe comprising the introduced plasmids. Although the size of the interspersing host DNA within the transgene locus is unknown, the sizes of the transgene-hybridizing restriction fragments indicated that the entire transgene locus must be at least from 35–280 kb. The observation that all transgenic lines analyzed exhibited genomic interspersion of multiple clustered transgenes suggests a predominating integration mechanism. We propose that transgene integration at multiple clustered DNA replication forks could account for the observed interspersion of transgenic DNA with host genomic DNA within transgenic loci.
Resumo:
Hereditary tyrosinemia type I (HT1) is an autosomal recessive inborn error of metabolism caused by the deficiency of fumarylacetoacetate hydrolase, the last enzyme in the tyrosine catabolism pathway. This defect results in accumulation of succinylacetone (SA) that reacts with amino acids and proteins to form stable adducts via Schiff base formation, lysine being the most reactive amino acid. HT1 patients surviving beyond infancy are at considerable risk for the development of hepatocellular carcinoma, and a high level of chromosomal breakage is observed in HT1 cells, suggesting a defect in the processing of DNA. In this paper we show that the overall DNA-ligase activity is low in HT1 cells (about 20% of the normal value) and that Okazaki fragments are rejoined at a reduced rate compared with normal fibroblasts. No mutation was found by sequencing the ligase I cDNA from HT1 cells, and the level of expression of the ligase I mRNA was similar in normal and HT1 fibroblasts, suggesting the presence of a ligase inhibitor. SA was shown to inhibit in vitro the overall DNA-ligase activity present in normal cell extracts. The activity of purified T4 DNA-ligase, whose active site is also a lysine residue, was inhibited by SA in a dose-dependent manner. These results suggest that accumulation of SA reduces the overall ligase activity in HT1 cells and indicate that metabolism errors may play a role in regulating enzymatic activities involved in DNA replication and repair.
Resumo:
Infection of Escherichia coli containing the type I restriction enzyme EcoKI by bacteriophage T7 0.3 mutants leads to restriction during the late stages of genome entry and during DNA replication. Patterns of cleavage in vivo suggest that some cutting occurs near the midpoint of two recognition sites, consistent with the idea that EcoKI translocates DNA bidirectionally through itself and cuts when two enzyme molecules collide. Rapid ejection of a 0.3+ T7 genome from a bacteriophage λ particle results in degradation of the infecting DNA by EcoKI, showing that the normal T7 DNA translocation process delays restriction. A unique recognition site inserted at the genomic left end allows EcoKI to function as a molecular motor and to translocate the remaining 39 kilobases of T7 DNA into the cell.
Resumo:
The non-Mendelian inheritance of organelle genes is a phenomenon common to almost all eukaryotes, and in the isogamous alga Chlamydomonas reinhardtii, chloroplast (cp) genes are transmitted from the mating type positive (mt+) parent. In this study, the preferential disappearance of the fluorescent cp nucleoids of the mating type negative (mt−) parent was observed in living young zygotes. To study the change in cpDNA molecules during the preferential disappearance, the cpDNA of mt+ or mt− origin was labeled separately with bacterial aadA gene sequences. Then, a single zygote with or without cp nucleoids was isolated under direct observation by using optical tweezers and investigated by nested PCR analysis of the aadA sequences. This demonstrated that cpDNA molecules are digested completely during the preferential disappearance of mt− cp nucleoids within 10 min, whereas mt+ cpDNA and mitochondrial DNA are protected from the digestion. These results indicate that the non-Mendelian transmission pattern of organelle genes is determined immediately after zygote formation.
Resumo:
Internodes of deepwater rice are induced to grow rapidly when plants become submerged. This adaptation enables deepwater rice to keep part of its foliage above the rising flood waters during the monsoon season and to avoid drowning. This growth response is, ultimately, elicited by the plant hormone gibberellin (GA). The primary target tissue for GA action is the intercalary meristem of the internode. Using differential display of mRNA, we have isolated a number of genes whose expression in the intercalary meristem is regulated by GA. The product of one of these genes was identified as an ortholog of replication protein A1 (RPA1). RPA is a heterotrimeric protein involved in DNA replication, recombination, and repair and also in regulation of transcription. A chimeric construct, in which the single-stranded DNA-binding domain of rice RPA1 was spliced into the corresponding region of yeast RPA1, was able to complement a yeast rpa1 mutant. The transcript level of rice RPA1 is high in tissues containing dividing cells. RPA1 mRNA levels increase rapidly in the intercalary meristem during submergence and treatment with GA before the increase in the level of histone H3 mRNA, a marker for DNA replication.
Resumo:
Funding: Wellcome Trust, 070247/Z/03/A. The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.
Resumo:
DNA polymerase δ (pol δ) plays an essential role in DNA replication, repair, and recombination. We have purified pol δ from Schizosaccharomyces pombe more than 103-fold and demonstrated that the polymerase activity of purified S. pombe pol δ is completely dependent on proliferating cell nuclear antigen and replication factor C. SDS/PAGE analysis of the purified fraction indicated that the pol δ complex consists of five subunits that migrate with apparent molecular masses of 125, 55, 54, 42, and 22 kDa. Western blot analysis indicated that the 125, 55, and 54 kDa proteins are the large catalytic subunit (Pol3), Cdc1, and Cdc27, respectively. The identity of the other two subunits, p42 and p22, was determined following proteolytic digestion and sequence analysis of the resulting peptides. The peptide sequences derived from the p22 subunit indicated that this subunit is identical to Cdm1, previously identified as a multicopy suppressor of the temperature-sensitive cdc1-P13 mutant, whereas peptide sequences derived from the p42 subunit were identical to a previously uncharacterized ORF located on S. pombe chromosome 1.
Resumo:
To further elucidate the mechanism and dynamics of bacteriophage T4 holoenzyme formation, a mutant polymerase in which the last six carboxyl-terminal amino acids are deleted, was constructed, overexpressed, and purified to homogeneity. The mutant polymerase, designated ΔC6 exo−, is identical to wild-type exo− polymerase with respect to kcat, kpol, and dissociation constants for nucleotide and DNA substrate. However, unlike wild-type exo− polymerase, the ΔC6 exo− polymerase is unable to interact with the 45 protein to form the stable holoenzyme. A synthetic polypeptide corresponding to the carboxyl terminus of the wild-type exo− polymerase was tested as an in vitro inhibitor of bacteriophage T4 DNA replication. Surprisingly, the peptide does not directly inhibit holoenzyme complex formation by disrupting the interaction of the polymerase with the 45 protein. On the contrary, the peptide appears to disrupt the interaction of the 44/62 protein with the 45 protein, suggesting that the 44/62 protein and the polymerase use the same site on the 45 protein for functional interactions. Data presented are discussed in terms of a model correlating the functionality of the carboxyl terminus of the polymerase for productive interactions with the 45 protein as well as in terms of the 45 protein concomitantly interacting with the 44/62 protein and polymerase.
Resumo:
We describe here a DNA polymerase family highly conserved in Euryarchaeota, a subdomain of Archaea. The DNA polymerase is composed of two proteins, DP1 and DP2. Sequence analysis showed that considerable similarity exists between DP1 and the second subunit of eukaryotic DNA polymerase δ, a protein essential for the propagation of Eukarya, and that DP2 has conserved motifs found in proteins with nucleotide-polymerizing activity. These results, together with our previous biochemical analyses of one of the members, DNA polymerase II (DP1 + DP2) from Pyrococcus furiosus, implicate the DNA polymerases of this family in the DNA replication process of Euryarchaeota. The discovery of this DNA-polymerase family, aside from providing an opportunity to enhance our knowledge of the evolution of DNA polymerases, is a significant step toward the complete understanding of DNA replication across the three domains of life.
Resumo:
Single-stranded DNA-binding proteins (SSBs) play essential roles in DNA replication, recombination, and repair in bacteria and eukarya. We report here the identification and characterization of the SSB of an archaeon, Methanococcus jannaschii. The M. jannaschii SSB (mjaSSB) has significant amino acid sequence similarity to the eukaryotic SSB, replication protein A (RPA), and contains four tandem repeats of the core single-stranded DNA (ssDNA) binding domain originally defined by structural studies of RPA. Homologous SSBs are encoded by the genomes of other archaeal species, including Methanobacterium thermoautotrophicum and Archaeoglobus fulgidus. The purified mjaSSB binds to ssDNA with high affinity and selectivity. The apparent association constant for binding to ssDNA is similar to that of RPA under comparable experimental conditions, and the affinity for ssDNA exceeds that for double-stranded DNA by at least two orders of magnitude. The binding site size for mjaSSB is ≈20 nucleotides. Given that RPA is related to mjaSSB at the sequence level and to Escherichia coli SSB at the structural level, we conclude that the SSBs of archaea, eukarya, and bacteria share a common core ssDNA-binding domain. This ssDNA-binding domain was presumably present in the common ancestor to all three major branches of life.
Resumo:
Previous studies have identified an ATP-dependent DNA helicase activity intrinsic to the human minichromosome maintenance (MCM) complex, composed of MCM subunits 4, 6, and 7 [Ishimi, Y. (1997) J. Biol. Chem. 272, 24508–24513]. In contrast to the presence of multiple MCM genes (at least six) in eukaryotes, the archaeon Methanobacterium thermoautotrophicum ΔH (mth) genome contains a single open reading frame coding for an MCM protein. In this study we report the isolation of the mthMCM protein overexpressed in Escherichia coli. The purified recombinant protein was found to exist in both multimeric (≈103 kDa) and monomeric (76 kDa) forms. Both forms of the protein bind to single-stranded DNA, hydrolyze ATP in the presence of DNA, and possess 3′-to-5′ ATP-dependent DNA helicase activities. Thus, a single mthMCM protein contains biochemical properties identical to those associated with the eukaryotic MCM4, -6, and -7 complex. These results suggest that the characterization of the mthMCM protein and its multiple forms may contribute to our understanding of the role of MCM helicase activity in eukaryotic chromosomal DNA replication.
Resumo:
Telomerase is an essential enzyme that maintains telomeres on eukaryotic chromosomes. In mammals, telomerase is required for the lifelong proliferative capacity of normal regenerative and reproductive tissues and for sustained growth in a dedifferentiated state. Although the importance of telomeres was first elucidated in plants 60 years ago, little is known about the role of telomeres and telomerase in plant growth and development. Here we report the cloning and characterization of the Arabidopsis telomerase reverse transcriptase (TERT) gene, AtTERT. AtTERT is predicted to encode a highly basic protein of 131 kDa that harbors the reverse transcriptase and telomerase-specific motifs common to all known TERT proteins. AtTERT mRNA is 10–20 times more abundant in callus, which has high levels of telomerase activity, versus leaves, which contain no detectable telomerase. Plants homozygous for a transfer DNA insertion into the AtTERT gene lack telomerase activity, confirming the identity and function of this gene. Because telomeres in wild-type Arabidopsis are short, the discovery that telomerase-null plants are viable for at least two generations was unexpected. In the absence of telomerase, telomeres decline by approximately 500 bp per generation, a rate 10 times slower than seen in telomerase-deficient mice. This gradual loss of telomeric DNA may reflect a reduced rate of nucleotide depletion per round of DNA replication, or the requirement for fewer cell divisions per organismal generation. Nevertheless, progressive telomere shortening in the mutants, however slow, ultimately should be lethal.
Resumo:
Inhibition of DNA replication and physical DNA damage induce checkpoint responses that arrest cell cycle progression at two different stages. In Saccharomyces cerevisiae, the execution of both checkpoint responses requires the Mec1 and Rad53 proteins. This observation led to the suggestion that these checkpoint responses are mediated through a common signal transduction pathway. However, because the checkpoint-induced arrests occur at different cell cycle stages, the downstream effectors mediating these arrests are likely to be distinct. We have previously shown that the S. cerevisiae protein Pds1p is an anaphase inhibitor and is essential for cell cycle arrest in mitosis in the presence DNA damage. Herein we show that DNA damage, but not inhibition of DNA replication, induces the phosphorylation of Pds1p. Analyses of Pds1p phosphorylation in different checkpoint mutants reveal that in the presence of DNA damage, Pds1p is phosphorylated in a Mec1p- and Rad9p-dependent but Rad53p-independent manner. Our data place Pds1p and Rad53p on parallel branches of the DNA damage checkpoint pathway. We suggest that Pds1p is a downstream target of the DNA damage checkpoint pathway and that it is involved in implementing the DNA damage checkpoint arrest specifically in mitosis.
Resumo:
We report here the isolation and functional analysis of the rfc3+ gene of Schizosaccharomyces pombe, which encodes the third subunit of replication factor C (RFC3). Because the rfc3+ gene was essential for growth, we isolated temperature-sensitive mutants. One of the mutants, rfc3-1, showed aberrant mitosis with fragmented or unevenly separated chromosomes at the restrictive temperature. In this mutant protein, arginine 216 was replaced by tryptophan. Pulsed-field gel electrophoresis suggested that rfc3-1 cells had defects in DNA replication. rfc3-1 cells were sensitive to hydroxyurea, methanesulfonate (MMS), and gamma and UV irradiation even at the permissive temperature, and the viabilities after these treatments were decreased. Using cells synchronized in early G2 by centrifugal elutriation, we found that the replication checkpoint triggered by hydroxyurea and the DNA damage checkpoint caused by MMS and gamma irradiation were impaired in rfc3-1 cells. Association of Rfc3 and Rad17 in vivo and a significant reduction of the phosphorylated form of Chk1 in rfc3-1 cells after treatments with MMS and gamma or UV irradiation suggested that the checkpoint signal emitted by Rfc3 is linked to the downstream checkpoint machinery via Rad17 and Chk1. From these results, we conclude that rfc3+ is required not only for DNA replication but also for replication and damage checkpoint controls, probably functioning as a checkpoint sensor.