910 resultados para Missing Data
Resumo:
Abstract: In the mid-1990s when I worked for a telecommunications giant I struggled to gain access to basic geodemographic data. It cost hundreds of thousands of dollars at the time to simply purchase a tile of satellite imagery from Marconi, and it was often cheaper to create my own maps using a digitizer and A0 paper maps. Everything from granular administrative boundaries to right-of-ways to points of interest and geocoding capabilities were either unavailable for the places I was working in throughout Asia or very limited. The control of this data was either in a government’s census and statistical bureau or was created by a handful of forward thinking corporations. Twenty years on we find ourselves inundated with data (location and other) that we are challenged to amalgamate, and much of it still “dirty” in nature. Open data initiatives such as ODI give us great hope for how we might be able to share information together and capitalize not only in the crowdsourcing behavior but in the implications for positive usage for the environment and for the advancement of humanity. We are already gathering and amassing a great deal of data and insight through excellent citizen science participatory projects across the globe. In early 2015, I delivered a keynote at the Data Made Me Do It conference at UC Berkeley, and in the preceding year an invited talk at the inaugural QSymposium. In gathering research for these presentations, I began to ponder on the effect that social machines (in effect, autonomous data collection subjects and objects) might have on social behaviors. I focused on studying the problem of data from various veillance perspectives, with an emphasis on the shortcomings of uberveillance which included the potential for misinformation, misinterpretation, and information manipulation when context was entirely missing. As we build advanced systems that rely almost entirely on social machines, we need to ponder on the risks associated with following a purely technocratic approach where machines devoid of intelligence may one day dictate what humans do at the fundamental praxis level. What might be the fallout of uberveillance? Bio: Dr Katina Michael is a professor in the School of Computing and Information Technology at the University of Wollongong. She presently holds the position of Associate Dean – International in the Faculty of Engineering and Information Sciences. Katina is the IEEE Technology and Society Magazine editor-in-chief, and IEEE Consumer Electronics Magazine senior editor. Since 2008 she has been a board member of the Australian Privacy Foundation, and until recently was the Vice-Chair. Michael researches on the socio-ethical implications of emerging technologies with an emphasis on an all-hazards approach to national security. She has written and edited six books, guest edited numerous special issue journals on themes related to radio-frequency identification (RFID) tags, supply chain management, location-based services, innovation and surveillance/ uberveillance for Proceedings of the IEEE, Computer and IEEE Potentials. Prior to academia, Katina worked for Nortel Networks as a senior network engineer in Asia, and also in information systems for OTIS and Andersen Consulting. She holds cross-disciplinary qualifications in technology and law.
Resumo:
This document does NOT address the issue of oxygen data quality control (either real-time or delayed mode). As a preliminary step towards that goal, this document seeks to ensure that all countries deploying floats equipped with oxygen sensors document the data and metadata related to these floats properly. We produced this document in response to action item 14 from the AST-10 meeting in Hangzhou (March 22-23, 2009). Action item 14: Denis Gilbert to work with Taiyo Kobayashi and Virginie Thierry to ensure DACs are processing oxygen data according to recommendations. If the recommendations contained herein are followed, we will end up with a more uniform set of oxygen data within the Argo data system, allowing users to begin analysing not only their own oxygen data, but also those of others, in the true spirit of Argo data sharing. Indications provided in this document are valid as of the date of writing this document. It is very likely that changes in sensors, calibrations and conversions equations will occur in the future. Please contact V. Thierry (vthierry@ifremer.fr) for any inconsistencies or missing information. A dedicated webpage on the Argo Data Management website (www) contains all information regarding Argo oxygen data management : current and previous version of this cookbook, oxygen sensor manuals, calibration sheet examples, examples of matlab code to process oxygen data, test data, etc..
Resumo:
International audience
Resumo:
Recent data indicate that levels of overweight and obesity are increasing at an alarming rate throughout the world. At a population level (and commonly to assess individual health risk), the prevalence of overweight and obesity is calculated using cut-offs of the Body Mass Index (BMI) derived from height and weight. Similarly, the BMI is also used to classify individuals and to provide a notional indication of potential health risk. It is likely that epidemiologic surveys that are reliant on BMI as a measure of adiposity will overestimate the number of individuals in the overweight (and slightly obese) categories. This tendency to misclassify individuals may be more pronounced in athletic populations or groups in which the proportion of more active individuals is higher. This differential is most pronounced in sports where it is advantageous to have a high BMI (but not necessarily high fatness). To illustrate this point we calculated the BMIs of international professional rugby players from the four teams involved in the semi-finals of the 2003 Rugby Union World Cup. According to the World Health Organisation (WHO) cut-offs for BMI, approximately 65% of the players were classified as overweight and approximately 25% as obese. These findings demonstrate that a high BMI is commonplace (and a potentially desirable attribute for sport performance) in professional rugby players. An unanswered question is what proportion of the wider population, classified as overweight (or obese) according to the BMI, is misclassified according to both fatness and health risk? It is evident that being overweight should not be an obstacle to a physically active lifestyle. Similarly, a reliance on BMI alone may misclassify a number of individuals who might otherwise have been automatically considered fat and/or unfit.
Resumo:
In this paper, a singularly perturbed ordinary differential equation with non-smooth data is considered. The numerical method is generated by means of a Petrov-Galerkin finite element method with the piecewise-exponential test function and the piecewise-linear trial function. At the discontinuous point of the coefficient, a special technique is used. The method is shown to be first-order accurate and singular perturbation parameter uniform convergence. Finally, numerical results are presented, which are in agreement with theoretical results.