949 resultados para Mine inspection


Relevância:

20.00% 20.00%

Publicador:

Resumo:

The Chonta Mine (75º00’30” W & 13º04’30”S, 4495 to 5000 m absl), owned by Compañía Minera Caudalosa, operates a polymetallic Zn-Pb-Cu-Ag vein system of the low sulphidation epithermal type, hosted by cenozoic volcanics of dacitic to andesitic composition (Domos de Lava Formation). Veta Rublo, one of the main veins of the system, is worked underground to nearly 300 m. It strikes 60-80º NE and dips 60-70º SE; its width varies between 0.30 and 2.20m, and it crops out along 1 km, but is continued along strike by other veins, as Veta Caudalosa, for some 5 km. Typical metal contents are 7% Zn, 5% Pb, 0.4% Cu and 3 oz/t Ag, with quartz, sericite, sphalerite, galena, pyrite, chalcopyrite, fahlore as main minerals, and minor carbonate and sulphosalts.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The Bienaventurada mine operates a polymetallic Ag-Pb-Zn (Cu, Au) vein system of the low sulphidation epithermal type. Fluid inclusions, FI, are abundant in quartz, sphalerite and adularia. FI petrography demonstrates typical primary growth zoning which occurs frequently in crystalline quartz, and defines the most common primary FI. These are usually very small, but several types of primary, P, and secondary, S, FI Assemblages (FIAs) comprising FI of measurable size (3 to > 100 μm) can also be identified through careful petrographic work. The fluids are aqueous and undersaturated, and no evidence of CO2 was found; the degree of fill is usually high (~70-80 %) in the L-rich inclusions, but extremely low in V-rich inclusions. The measured microthermometric values are very consistent in the FIAs selected; they are for the most part roughly similar in the P and S assemblages: the median is typically ~258ºC for total homogenization temperatures, Th, and -1.5 ºC for ice melting temperatures, Tm (corresponding to 2.57 wt% NaCl eq). The widespread occurrence of L-rich and V-rich FI in the same FIA and the consistent Th values point to an extensive boiling system along the vein. In these conditions, Th equals T of trapping, and the ores are assumed to have been precipitated from an aqueous low salinity boiling fluid, of likely meteoric origin, at some 250-280º C, under ~500 m hydrostatic head.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

NPV is a static measure of project value which does not discriminate between levels of internal and external risk in project valuation. Due to current investment project?s characteristics, a much more complex model is needed: one that includes the value of flexibility and the different risk levels associated with variables subject to uncertainty (price, costs, exchange rates, grade and tonnage of the deposits, cut off grade, among many others). Few of these variables present any correlation or can be treated uniformly. In this context, Real Option Valuation (ROV) arose more than a decade ago, as a mainly theoretical model with the potential for simultaneous calculation of the risk associated with such variables. This paper reviews the literature regarding the application of Real Options Valuation in mining, noting the prior focus on external risks, and presents a case study where ROV is applied to quantify risk associated to mine planning.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Phytoextraction is an environmental-friendly and cost-effective technology that uses metal hyperaccumulator plants to remove heavy metals from soils. The metals are absorbed by the roots, transported and accumulated in the aerial parts of the plants, which can be harvested and eliminated. The aim of this work was to study some hyperaccumulator species that could be useful to decontaminate mine soils and also to investigate the bioavailability and uptake of these metals by plants with the addition of organic amendments. Pot experiments were performed with soil samples collected from two mining areas in the north of Madrid, where there was an intense mining activity more than 50 years ago. Three species (Thlaspi arvense, Brassica juncea and Atriplex halimus) were grown under controlled conditions in pots filled with contaminated soils mixed with 0 Mg, 30 Mg and 60 Mg per hectare of two different organic amendments: a commercial compost made of pine bark, peat and wood fiber and other made of horse and sheep manure and wood fiber. Plants were harvested at the end of their crop cycle and were digested in order to measure metal concentration (Zn, Cu and Cd) in roots and shoots. Highest plant metal concentration was observed in pots treated with pine bark amendment and with pure soil due to an increase in metal bioavailability with decreasing pH. Also in those treatments the total plant biomass was lower, even some plants could not germinate. On the contrary, there was a lower metal concentration in plant tissues of pots with manure because its higher pH whereas plant growth was significantly larger so there was an incresing amount of metals removed from soil by plants. Comparing the three species results indicate a higher total metal uptake in A. halimus than B. juncea and T. arvense. In conclusion, results show that pH affects metal bioavailability and uptake by hyperaccumulator plants. Addition of organic amendments could be a successful technique for stabilization of metals in contaminated soils.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A one-step extraction procedure and a leaching column experiment were performed to assess the effects of citric and tartaric acids on Cu and Zn mobilization in naturally contaminated mine soils to facilitate assisted phytoextraction. A speciation modeling of the soil solution and the metal fractionation of soils were performed to elucidate the chemical processes that affected metal desorption by organic acids. Different extracting solutions were prepared, all of which contained 0.01 M KNO3 and different concentrations of organic acids: control without organic acids, 0.5 mM citric, 0.5 mM tartaric, 10 mM citric, 10 mM tartaric, and 5 mM citric +5 mM tartaric. The results of the extraction procedure showed that higher concentrations of organic acids increased metal desorption, and citric acid was more effective at facilitating metal desorption than tartaric acid. Metal desorption was mainly influenced by the decreasing pH and the dissolution of Fe and Mn oxides, not by the formation of soluble metal–organic complexes as was predicted by the speciation modeling. The results of the column study reported that low concentrations of organic acids did not significantly increase metal mobilization and that higher doses were also not able to mobilize Zn. However, 5–10 mM citric acid significantly promoted Cu mobilization (from 1 mg kg−1 in the control to 42 mg kg−1 with 10 mM citric acid) and reduced the exchangeable (from 21 to 3 mg kg−1) and the Fe and Mn oxides (from 443 to 277 mg kg−1) fractions. Citric acid could efficiently facilitate assisted phytoextraction techniques.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

CO2 Emission from two old mine drillings (Mt. Amiata, Central Italy) as a possible example of storage and leakage of deep-seated CO2

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Se describe el comportamiento de los rellenos de pasta de las cámaras primarias de la mina de Aguas Teñidas y se calcula la resistencia que deben tener dichos rellenos para que no se desmoronen las paredes de los mismos que quedan expuestas al extraer las cámaras secundarias.Abstract:This article presents the study carried out at an underground mine to understand the stress distribution in the paste fills and to calculate the stability of the paste walls. The mine is operated using sublevel stopes. Three-dimensional numerical models designed with the FLAC 3D software are used to study the distribution of the vertical stresses in the paste. The numerical models have demonstrated that an arc-like effect is produced in the paste fills of the primary stopes. This effect relieves the vertical stresses and increases the stability of the exposed paste wall fill. Based on the results of the numerical models, in the 30m high secondary stopes, the arc effect starts to be evident only in paste walls with a width/height ratio lower than 0.8. 3-D calculations show that the use of Mitchell, R. J. et al. (1982) formula may be risky when estimating the fill stability in secondary stopes.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The aim of this work was to study some hyperaccumulator species that could be useful to decontaminate mine soils and also to investigate the bioavailability and uptake of these metals by plants with the addition of organic amendments. Pot experiments were performed with soil samples collected from two mining areas in the north of Madrid, where there was an intense mining activity more than 50 years ago. Three species (Thlaspi arvense, Brassica juncea and Atriplex halimus) were grown under controlled conditions in pots filled with contaminated soils mixed with 0 Mg, 30 Mg and 60 Mg per hectare of two different organic amendments: a commercial compost made of pine bark, peat and wood fiber and other made of horse and sheep manure and wood fiber. Plants were harvested at the end of their crop cycle and were digested in order to measure metal concentration (Zn, Cu and Cd) in roots and shoots. Highest plant metal concentration was observed in pots treated with pine bark amendment and with pure soil due to an increase in metal bioavailability with decreasing pH. Also in those treatments the total plant biomass was lower, even some plants could not germinate. On the contrary, there was a lower metal concentration in plant tissues of pots with manure because its higher pH whereas plant growth was significantly larger so there was an incresing amount of metals removed from soil by plants. Comparing the three species results indicate a higher total metal uptake in A. halimus than B. juncea and T. arvense. In conclusion, results show that pH affects metal bioavailability and uptake by hyperaccumulator plants. Addition of organic amendments could be a successful technique for stabilization of metals in contaminated soils.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Mine soils usually contain large levels of heavy metals and poor fertility conditions which limit their reclamation and the application of phyto-remediation technologies. Two organic waste materials (pine bark compost and sheep and horse manure compost), with different pHs and varying degrees of humification and nutrient contents, were applied as amendments to assess their effects on copper (Cu) and zinc (Zn) bioavailability and on fertility conditions of mine soils. Soil samples collected from two abandoned mining areas near Madrid (Spain) were mixed with 0, 30 and 60 t ha?1 of the organic amendments. The concentrations of metals among the different mineral and organic fractions of soil were determined by several extraction procedures to study the metal distribution in the solid phase of the soil affected by the organic amendments. The results showed that the manure amendment increased the soil pH and the cation exchange capacity and enhanced the nutrient levels of these soils. The pine bark amendment decreased the soil pH and did not significantly change the nutrient status of soil. Soil pH, organic matter content and its degree of humification, which were altered by the amendments, were the main factors affecting Cu fractionation. Zn fractionation was mainly affected by soil pH. The addition of manure not only improved soil fertility, but also decreased metal bioavailability resulting in a reduction of metal toxicity. Conversely, pine bark amendment increased metal ioavailability. The use of sheep and horse manure could be a cost-effective practice for the restoration of contaminated mine soils.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Background and aims The high metal bioavailability and the poor conditions of mine soils yield a low plant biomass, limiting the application of phytoremediation techniques. A greenhouse experiment was performed to evaluate the effects of organic amendments on metal stabilization and the potential of Brassica juncea L. for phytostabilization in mine soils. Methods Plants were grown in pots filled with soils collected from two mine sites located in Central Spain mixed with 0, 30 and 60 tha?1 of pine bark compost and horse- and sheep-manure compost. Plant biomass and metal concentrations in roots and shoots were measured. Metal bioavailability was assessed using a rhizosphere-based method (rhizo), which consists of a mixture of low-molecular-weight organic acids to simulate root exudates. Results Manure reduced metal concentrations in shoots (10?50 % reduction of Cu and 40?80 % of Zn in comparison with non-amended soils), bioconcentration factor (10?50 % of Cu and 40?80 % of Zn) and metal bioavailability in soil (40?50 % of Cu and 10?30 % of Zn) due to the high pH and the contribution of organic matter. Manure improved soil fertility and was also able to increase plant biomass (5?20 times in shoots and 3?30 times in roots), which resulted in a greater amount of metals removed from soil and accumulated in roots (increase of 2?7 times of Cu and Zn). Plants grown in pine bark treatments and in non-amended soils showed a limited biomass and high metal concentrations in shoots. Conclusions The addition of manure could be effective for the stabilization of metals and for enhancing the phytostabilization ability of B. juncea in mine soils. In this study, this species resulted to be a potential candidate for phytostabilization in combination with manure, differing from previous results, in which B. juncea had been recognized as a phytoextraction plant.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Zonal plant communities of the Ribesalbes-Alcora basin (La Rinconada mine, eastern Spain) during the early Miocene

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Delamination reduces the strenght of the composites, mainly in compression. Several methods exist to overcome this problem, but they are either not feasible for large scale production or too expensive. 3D composites are a promising solution.