813 resultados para Microstructure fabrication
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
This work presents the preparation and characterization of PZT ceramic obtained by the polymeric precursor method (PPM). The influence of the synthesis method on the grain size and the morphology are also object of study. The fabrication and characterization of composite films with 0-3 connectivity, immersing nanoparticles of PZT into the non-polar poly(vinylidene fluoride) -PVDF as the polymer matrix were presented. For comparison there are results obtained with composite samples made of ceramic particles unrecovered and recovered with a conducting polymer, the polyaniline (PAni).
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
We report, for the first time to our knowledge, experimental results on pedestal waveguides produced with Yb3+/Er3+ codoped Bi2O3-WO3-TeO2 thin films deposited by RF Sputtering for photonic applications. Thin films were deposited using Ar/O-2 plasma at 5 mTorr pressure and RF power of 40 W on substrates of silicon wafers. The definition of the pedestal waveguide structure was made using conventional optical lithography followed by plasma etching. Propagation losses around 2.0 dB/cm and 2.5 dB/cm were obtained at 633 and 1050 nm, respectively, for waveguides in the 20-100 mu m width range. Single-mode propagation was measured for waveguides width up to 10 mu m and 12 mu m, at 633 nm and 1050 nm, respectively; for larger waveguides widths multi-mode propagation was obtained. Internal gain of 5.6 dB at 1530 nm, under 980 nm excitation, was measured for 1.5 cm waveguide length (similar to 3.7 dB/cm). The present results show the possibility of using Yb3+/Er3+ codoped Bi2O3-WO3-TeO2 pedestal waveguide for optical amplifiers. (C) 2014 Elsevier B.V. All rights reserved.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
The present work aims to study the microstructure and mechanical properties of titanium alloys, widely used in the manufacture of orthopedic implants in order to compare a new manufacturing technology of implants, rapid prototyping in metals with conventional manufacturing processes. Rapid prototyping is being used in many areas of human knowledge to assist in the study and often in the manufacture of components for their own use. Nowadays with the advancement of software and equipment such as computed tomography and magnetic resonance imaging, we can reproduce any part of the human body in three-dimensional images with great perfection and it is used in the reproduction of implants, scaffolds, material aid and preparation in surgery. This work aims to do: A comparison between the microstructure of the alloy in the two manufacturing processes (prototyping and conventional), showing the grain size, the nature, form, quantity, and distribution of various ingredients or certain inclusions and study of mechanical properties of titanium in both cases.
Resumo:
The oral rehabilitation of edentulous patients with immediate loading has become a safe procedure with high predictability. The success is related to immediate fabrication of a passive fit framework to attach the implants. Based on these considerations, this case report shows an alternative technique for mandibular rehabilitation using implants immediately loaded, where the framework was fabricated using cylinders with internal reinforcement and precast pieces, electrowelding, and conventional welding providing esthetics and function to the patient in a short period of time.
Resumo:
Pós-graduação em Engenharia Mecânica - FEIS
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
The Bi-Sr-Ca-Cu-O system has been one of the most studied superconducting ceramic materials for industry applications. The most of the studies with this aim are on silver/ceramic composites, due to the benefits and great compatibility of this metal with the oxide. In this paper we describe a systematic and comparative study on Ag/BSCCO composite, made by the citrate route, in which the ceramic pellets are sintered in the presence of silver powder using several proportions and having several granulations. It was observed that the introduction of fine (0.5 and 2 μm) silver powder in the proportions of 5 wt. % always implies in a better critical current density compared to the no silver pellet. According to the results, the silver powder in excess of 5 wt.% may not promote best electrical properties, depending on the size of the silver particles.