866 resultados para Micorriza vesicular-arbuscular
Resumo:
Membrane fusion and fission are antagonistic reactions controlled by different proteins. Dynamins promote membrane fission by GTP-driven changes of conformation and polymerization state, while SNAREs fuse membranes by forming complexes between t- and v-SNAREs from apposed vesicles. Here, we describe a role of the dynamin-like GTPase Vps1p in fusion of yeast vacuoles. Vps1p forms polymers that couple several t-SNAREs together. At the onset of fusion, the SNARE-activating ATPase Sec18p/NSF and the t-SNARE depolymerize Vps1p and release it from the membrane. This activity is independent of the SNARE coactivator Sec17p/alpha-SNAP and of the v-SNARE. Vps1p release liberates the t-SNAREs for initiating fusion and at the same time disrupts fission activity. We propose that reciprocal control between fusion and fission components exists, which may prevent futile cycles of fission and fusion.
Resumo:
Ten years ago, the first cellular receptor for the prototypic arenavirus lymphocytic choriomeningitis virus (LCMV) and the highly pathogenic Lassa virus (LASV) was identified as alpha-dystroglycan (alpha-DG), a versatile receptor for proteins of the extracellular matrix (ECM). Biochemical analysis of the interaction of alpha-DG with arenaviruses and ECM proteins revealed a strikingly similar mechanism of receptor recognition that critically depends on specific sugar modification on alpha-DG involving a novel class of putative glycosyltransferase, the LARGE proteins. Interestingly, recent genome-wide detection and characterization of positive selection in human populations revealed evidence for positive selection of a locus within the LARGE gene in populations from Western Africa, where LASV is endemic. While most enveloped viruses that enter the host cell in a pH-dependent manner use clathrin-mediated endocytosis, recent studies revealed that the Old World arenaviruses LCMV and LASV enter the host cell predominantly via a novel and unusual endocytotic pathway independent of clathrin, caveolin, dynamin, and actin. Upon internalization, the virus is rapidly delivered to endosomes via an unusual route of vesicular trafficking that is largely independent of the small GTPases Rab5 and Rab7. Since infection of cells with LCMV and LASV depends on DG, this unusual endocytotic pathway could be related to normal cellular trafficking of the DG complex. Alternatively, engagement of arenavirus particles may target DG for an endocytotic pathway not normally used in uninfected cells thereby inducing an entry route specifically tailored to the pathogen's needs.
Resumo:
Although the physiological and pharmacological evidences suggest a role for angiotensin II (Ang II) with the mammalian heart, the source and precise location of Ang II are unknown. To visualize and quantitate Ang II in atria, ventricular walls and interventricular septum of the rat and human heart and to explore the feasibility of local Ang II production and function, we investigated by different methods the expression of proteins involved in the generation and function of Ang II. We found mRNA of angiotensinogen (Ang-N), of angiotensin converting enzyme, of the angiotensin type receptors AT(1A) and AT(2) (AT(1B) not detected) as well as of cathepsin D in any part of the hearts. No renin mRNA was traceable. Ang-N mRNA was visualized by in situ hybridization in atrial ganglial neurons. Ang II and dopamine-β-hydroxylase (DβH) were either colocalized inside the same neuronal cell or the neurons were specialized for Ang II or DβH. Within these neurons, the vesicular acetylcholine transporter (VAChT) was neither colocalized with Ang II nor DβH, but VAChT-staining was found with synapses en passant encircle these neuronal cells. The fibers containing Ang II exhibited with blood vessels and with cardiomyocytes supposedly angiotensinergic synapses en passant. In rat heart, right atrial median Ang II concentration appeared higher than septal and ventricular Ang II. The distinct colocalization of neuronal Ang II with DβH in the heart may indicate that Ang II participates together with norepinephrine in the regulation of cardiac functions: Produced as a cardiac neurotransmitter Ang II may have inotropic, chronotropic or dromotropic effects in atria and ventricles and contributes to blood pressure regulation.
Resumo:
The identification of genetic causes for Mendelian disorders has been based on the collection of multi-incident families, linkage analysis, and sequencing of genes in candidate intervals. This study describes the application of next-generation sequencing technologies to a Swiss kindred presenting with autosomal-dominant, late-onset Parkinson disease (PD). The family has tremor-predominant dopa-responsive parkinsonism with a mean onset of 50.6 ± 7.3 years. Exome analysis suggests that an aspartic-acid-to-asparagine mutation within vacuolar protein sorting 35 (VPS35 c.1858G>A; p.Asp620Asn) is the genetic determinant of disease. VPS35 is a central component of the retromer cargo-recognition complex, is critical for endosome-trans-golgi trafficking and membrane-protein recycling, and is evolutionarily highly conserved. VPS35 c.1858G>A was found in all affected members of the Swiss kindred and in three more families and one patient with sporadic PD, but it was not observed in 3,309 controls. Further sequencing of familial affected probands revealed only one other missense variant, VPS35 c.946C>T; (p.Pro316Ser), in a pedigree with one unaffected and two affected carriers, and thus the pathogenicity of this mutation remains uncertain. Retromer-mediated sorting and transport is best characterized for acid hydrolase receptors. However, the complex has many types of cargo and is involved in a diverse array of biologic pathways from developmental Wnt signaling to lysosome biogenesis. Our study implicates disruption of VPS35 and retromer-mediated trans-membrane protein sorting, rescue, and recycling in the neurodegenerative process leading to PD.
Resumo:
In this study we tested whether communities of arbuscular mycorrhizal fungi (AMF) colonizing the roots of maize (Zea mays L.) were affected by soil tillage practices (plowing, chiseling, and no-till) in a long-term field experiment carried out in Tanikon (Switzerland). AMF were identified in the roots using specific polymerase chain reaction (PCR) markers that had been developed for the AMF previously isolated from the soils of the studied site. A nested PCR procedure with primers of increased specificity (eukaryotic, then, fungal, then AMF species or. species-grouop specific) was used. Sequencing of amplified DNA confirmed that the DNA obtained from the maize roots was of AMF origin. Presence of particular AMF species or species-group was scored as a presence of a DNA product after PCR with specific primers. We also used single-strand conformation polymorphism analysis (SSCP), of amplified DNA samples to-check if the amplification of the DNA from maize roots matched the expected profile for a particular AMF isolate with a given specific primer pair. Presence of the genus Scutellospora, in maize roots was strongly reduced in plowed and chiseled soils. Fungi from the suborder Glomineae were more prevalent colonizers of maize roots growing in plowed soils, but were also present in the roots from other tillage treatments. These changes in community of AMF colonizing maize roots might be due to (1), the differences in tolerance to the tillage-induced disruption of the hyphae among the different AMF species, (2) changes in nutrient content of the soil, (3) changes in microbial activity, or (4) changes in weed populations in response to soil tillage. This is the first report on community composition of AMF in the roots of a field-grown crop plant (maize) as affected by soil tillage.
Resumo:
The GTPases Rab3a and Rab27a and their effectors Granuphilin/Slp4 and Noc2 are essential regulators of neuroendocrine secretion. Chronic exposure of pancreatic beta-cells to supraphysiological glucose levels decreased selectively the expression of these proteins. This glucotoxic effect was mimicked by cAMP-raising agents and blocked by PKA inhibitors. We demonstrate that the transcriptional repressor ICER, which is induced in a PKA-dependent manner by chronic hyperglycemia and cAMP-raising agents, is responsible for the decline of the four genes. ICER overexpression diminished the level of Granuphilin, Noc2, Rab3a and Rab27a by binding to cAMP responsive elements located in the promoters of these genes and inhibited exocytosis of beta-cells in response to secretagogues. Moreover, the loss in the expression of the genes of the secretory machinery caused by glucose and cAMP-raising agents was prevented by an antisense construct that reduces ICER levels. We propose that induction of inappropriate ICER levels lead to defects in the secretory process of pancreatic beta-cells possibly contributing, in conjunction with other known deleterious effects of hyperglycemia, to defective insulin release in type 2 diabetes.
Resumo:
Para estudar a dinâmica de fungos micorrízicos arbusculares (MA) nativos, em solo de cerrado natural e de três áreas degradadas, foram efetuadas avaliações quantitativa e qualitativa desses fungos, nos períodos seco e chuvoso. Nessa avaliação incluíram-se parcelas experimentais, em uma das áreas degradadas, com calcário, turfa natural e torta de mamona. Em casa de vegetação conduziram-se dois experimentos para avaliar a contribuição desses fungos no estabelecimento da gramínea pioneira Aristida setifolia Kunth. No primeiro, utilizaram-se substratos das quatro áreas, esterilizados a vapor e ao natural; no segundo, foram utilizados substratos da área experimental esterilizados, com e sem aplicação de mistura de três fungos MA nativos. No campo, a densidade aparente nas áreas degradadas foi superior à do cerrado natural, e todas apresentaram alta acidez e baixa fertilidade. Os fungos MA ocorreram em todas as áreas; houve maior número de esporos e espécies no período chuvoso. Em casa de vegetação, os fungos MA nativos promoveram aumentos significativos na matéria seca da gramínea. Não houve efeitos significativos do calcário e dos insumos orgânicos no crescimento das plantas sem inoculação dos fungos MA. Entretanto, com a inoculação, ocorreu acréscimo significativo no crescimento da gramínea e diferenciação e maximização nos efeitos desses insumos.
Resumo:
The experiment was carried out on unsterilized field soil with low phosphorus availability with the objective of examining the effect of cultural practices on mycorrhizal colonization and growth of common bean. The treatments were: three pre-crops (maize, wheat and fallow) followed by three soil management practices ("ploughing", mulching and bare fallow without "ploughing" during the winter months). After the cultural practices, Phaseolus vulgaris cv. Canadian Wonder was grown in this soil. Fallowing and soil disturbance reduced natural soil infectivity. Mycorrhizal infection of the bean roots occurred more rapidly in the recently cropped soil than in the fallow soil. Prior cropping with a strongly mycorrhizal plant (maize) increased infectivity even further.
Resumo:
Chemokines are small chemotactic molecules widely expressed throughout the central nervous system. A number of papers, during the past few years, have suggested that they have physiological functions in addition to their roles in neuroinflammatory diseases. In this context, the best evidence concerns the CXC-chemokine stromal cell-derived factor (SDF-1alpha or CXCL12) and its receptor CXCR4, whose signalling cascade is also implicated in the glutamate release process from astrocytes. Recently, astrocytic synaptic like microvesicles (SLMVs) that express vesicular glutamate transporters (VGLUTs) and are able to release glutamate by Ca(2+)-dependent regulated exocytosis, have been described both in tissue and in cultured astrocytes. Here, in order to elucidate whether SDF-1alpha/CXCR4 system can participate to the brain fast communication systems, we investigated whether the activation of CXCR4 receptor triggers glutamate exocytosis in astrocytes. By using total internal reflection (TIRF) microscopy and the membrane-fluorescent styryl dye FM4-64, we adapted an imaging methodology recently developed to measure exocytosis and recycling in synaptic terminals, and monitored the CXCR4-mediated exocytosis of SLMVs in astrocytes. We analyzed the co-localization of VGLUT with the FM dye at single-vesicle level, and observed the kinetics of the FM dye release during single fusion events. We found that the activation of CXCR4 receptors triggered a burst of exocytosis on a millisecond time scale that involved the release of Ca(2+) from internal stores. These results support the idea that astrocytes can respond to external stimuli and communicate with the neighboring cells via fast release of glutamate.
Resumo:
The establishment of arbuscular mycorrhizal (AM) symbioses, formed by most flowering plants in association with glomeromycotan fungi, and the root-nodule (RN) symbiosis, formed by legume plants and rhizobial bacteria, requires an ongoing molecular dialogue that underpins the reprogramming of root cells for compatibility. In both endosymbioses, there are distinct phases to the interaction, including a presymbiotic anticipation phase and, subsequently, an intraradical accommodation of the microsymbiont. Maintenance of the endosymbiosis then depends on reciprocal nutrient exchange with the microsymbiont-obtaining plant photosynthates in exchange for mineral nutrients: enhanced phosphate and nitrogen uptake from AM fungi and fixed nitrogen from rhizobia. Despite the taxonomically distinct groups of symbionts, commonalities are observed in the signaling components and the modulation of host cell responses in both AM and RN symbioses, reflecting common mechanisms for plant cell reprogramming during endosymbiosis.
Resumo:
Amphetamine derivatives such as methamphetamine (METH) and 3,4-methylenedioxymethamphetamine (MDMA, ecstasy) are drugs widely abused in a recreational context. This has led to concern because of the evidence that they are neurotoxic in animal models and cognitive impairments have been described in heavy abusers. The main targets of these drugs are plasmalemmal and vesicular monoamine transporters, leading to reverse transport and increased monoamine efflux to the synapse. As far as neurotoxicity is concerned, increased reactive oxygen species (ROS) production seems to be one of the main causes. Recent research has demonstrated that blockade of 7 nicotinic acetylcholine receptors (nAChR) inhibits METH- and MDMA-induced ROS production in striatal synaptosomes which is dependent on calcium and on NO-synthase activation. Moreover, 7 nAChR antagonists (methyllycaconitine and memantine) attenuated in vivo the neurotoxicity induced by METH and MDMA, and memantine prevented the cognitive impairment induced by these drugs. Radioligand binding experiments demonstrated that both drugs have affinity to 7 and heteromeric nAChR, with MDMA showing lower Ki values, while fluorescence calcium experiments indicated that MDMA behaves as a partial agonist on 7 and as an antagonist on heteromeric nAChR. Sustained Ca increase led to calpain and caspase-3 activation. In addition, modulatory effects of MDMA on 7 and heteromeric nAChR populations have been found.
Resumo:
An oceanic assemblage of alkaline basalts, radiolarites and polymictic breccias forms the tectonic substratum of the Santa Elena Nappe, which is constituted by extensive outcrops of ultramafic and mafic rocks of the Santa Elena Peninsula (NW Costa Rica). The undulating basal contact of this nappe defines several half-windows along the south shores of the Santa Elena Peninsula. Lithologically it is constituted by vesicular pillowed and massive alkaline basaltic flows, alkaline sills, ribbon-bedded and knobby radiolarites, muddy tuffaceous and detrital turbidites, debris flows and polymictic breccias and megabreccias. Sediments and basalt flows show predominant subvertical dips and occur in packages separated by roughly bed-parallel thrust planes. Individual packages reveal a coherent internal stratigraphy that records younging to the east in all packages and shows rapid coarsening upwards of the detrital facies. Alkaline basalt flows, pillow breccias and sills within radiolarite successions are genetically related to a mid-Cretaceous submarine seamount. Detrital sedimentary facies range form distal turbidites to proximal debris flows and culminate in megabreccias related to collapse and mass wasting in an accretionary prism. According to radiolarian dating, bedded radiolarites and soft-sediment- deformed clasts in the megabreccias formed in a short, late Aptian to Cenomanian time interval. Middle Jurassic to Lower Cretaceous radiolarian ages are found in clasts and blocks reworked from an older oceanic basement. We conclude that the oceanic assemblage beneath the Santa Elena Nappe does not represent a continuous stratigraphic succession. It is a pile of individual thrust sheets constituting an accretionary sequence, where intrusion and extrusion of alkaline basalts, sedimentation of radiolarites, turbidites and trench fill chaotic sediments occurred during the Aptian-Cenomanian. These thrust sheets formed shortly before the off-scraping and accretion of the complex. Here we define the Santa Rosa Accretionary Complex and propose a new hypothesis not considered in former interpretations. This hypothesis would be the basis for further research.
Resumo:
Visando otimizar a produção de mudas de sabiá (Mimosa caesalpiniifolia Benth), foi conduzido um experimento para avaliar a efetividade da dupla inoculação com fungos micorrízicos arbusculares (FMA) e rizóbio. Os tratamentos, arrumados em esquema fatorial consistiram de presença e ausência de Rhizobium sp. e de FMA (Glomus etunicatum, Acaulospora morrowae e A. longula), e de três níveis de P (0, 20 e 40 kg/ha de P2O5, na forma de superfosfato triplo). A aplicação de P na ausência e na presença dos fungos não favoreceu o desenvolvimento das plantas. As mudas com a dupla inoculação apresentaram valores significativos no crescimento, área foliar, altura das plantas, atividade da enzima nitrogenase, porcentagem de colonização radicular e outros parâmetros analisados, independentemente do nível de P usado. A nodulação do sabiá foi favorecida pela micorrização, uma vez que as mudas inoculadas apenas com Rhizobium apresentaram nodulação significativamente menor. Houve aumento da colonização micorrízica e diminuição da esporulação na presença de Rhizobium.
Resumo:
OBJECTIVE: Targeting neuroprotectants specifically to the cells that need them is a major goal in biomedical research. Many peptidic protectants contain an active sequence linked to a carrier such as the transactivator of transcription (TAT) transduction sequence, and here we test the hypothesis that TAT-linked peptides are selectively endocytosed into neurons stressed by excitotoxicity and focal cerebral ischemia. METHODS: In vivo experiments involved intracerebroventricular injection of TAT peptides or conventional tracers (peroxidase, fluorescein isothiocyanate-dextran) in young rats exposed to occlusion of the middle cerebral artery at postnatal day 12. Cellular mechanisms of uptake were analyzed in dissociated cortical neuronal cultures. RESULTS: In both models, all tracers were taken up selectively into stressed neurons by endocytosis. In the in vivo model, this was neuron specific and limited to the ischemic area, where the neurons displayed enhanced immunolabeling for early endosomal antigen-1 and clathrin. The highly efficient uptake of TAT peptides occurred by the same selective mechanism as for conventional tracers. All tracers were targeted to the nucleus and cytoplasm of neurons that appeared viable, although ultimately destined to die. In dissociated cortical neuronal cultures, an excitotoxic dose of N-methyl-D-aspartate induced a similar endocytosis. It was 100 times more efficient with TAT peptides than with dextran, because the former bound to heparan sulfate proteoglycans at the cell surface, but it depended on dynamin and clathrin in both cases. INTERPRETATION: Excitotoxicity-induced endocytosis is the main entry route for protective TAT peptides and targets selectively the neurons that need to be protected.
Resumo:
Résumé : La sécrétion de l'insuline en réponse au glucose circulant dans le sang est la fonction principale de la cellule β. La perte de cette fonction est une des caractéristiques du diabète de type 2. L'exocytose est une fonction cellulaire indispensable au renouvellement des composants lipidiques et protéiques de la membrane cellulaire, à la communication entre les cellules et au maintien d'un environnement adéquat. On peut distinguer deux types d'exocytose : l'exocytose constitutive et l'exocytose régulée. Cette dernière est déclenchée par des stimuli externes. L'exocytose régulée est contrôlée au niveau de la fusion des vésicules de sécrétion avec la membrane plasmique. Certains composants moléculaires impliqués dans ce processus font partie de la famille des GTPases Rab. Les deux membres de cette famille impliqués sont Rab3 et Rab27. Nous avons étudié le rôle de la GTPase Rab27 dans les cellules INS-1E, une lignée cellulaire pancréatique β qui sécrète de l'insuline de façon régulée. Nous avons trouvé que la diminution d'expression de la protéine en utilisant le technique de « RNA interference » diminue la sécrétion stimulée, mais que la distribution des granules n'est nullement affectées par ce changement d'activité intrinsèque. Un des effecteurs identifiés de cette GTPase est Slac2c/MyRIP. Cette protéine possède plusieurs domaines fonctionnels dont un qui lui permet de se lier à l'actine, constituant du cytosquelette cellulaire. L'ensemble de nos résultats suggèrent que Rab27 et MyRIP font partie d'un complexe permettant l'interaction de la granule de sécrétion avec le cytosquelette d'actine corticale et participent à la régulation des dernières étapes de l'exocytose d'insuline. Ensuite, nous avons étudié les phosphoinositides (PI). Les phosphoinositides sont d'importantes molécules impliquées dans le régulation du trafic vésiculaire. Nous avons trouvé que le phosphatidylinosito1-4-phosphate (PI4P) et le phosphatidylinositol-4,5-biphosphate (PI(4,5)P2) augmentent la sécrétion sous l'action de 10µM de Ca2+ dans les cellules INS-1E perméabilisées avec la streptolysine-O. En plus, nous avons démontré que l'exocytose est diminuée dans les cellules intactes exprimant une protéine qui séquestre le PI(4,5)P2. Une diminution similaire est observée en diminuant l'expression de deux enzymes impliquées dans la production du PI(4,5)P2, la PI4Kinase β type III et la PIP5Kinase γ type I. Pour clarifier le mécanisme d'action des PI, nous avons investigué l'implication de trois cibles potentielles des PI, la PLD1, CAPS1 et Mint1. Pour ce faire, nous avons réduit le niveau d'expression endogène de ces protéines, ce qui inhibe la libération d'hormones provoquée par le glucose. Tout ceci indique donc que la production du PI(4,5)P2 est nécessaire pour le contrôle de la sécrétion et suggère qu'une partie de l'effet du PI sur la sécrétion pourrait être exercé par l'activation de la PLD1, CAPS1 et Mint1. Abstract Insulin release from pancreatic β-cells plays an essential role in the achievement of blood glucose homeostasis and defects in the regulation of this process lead to profound metabolic disorders and hyperglycaemia (eg. type 2 diabetes). Almost every cell in our organism releases proteins and other biological compounds using a fundamental cellular process known as constitutive exocytosis. In exocrine and endocrine glands, the cells are endowed with an additional and more refined release mechanism directly tuned by extracellular signals. This process, referred to as regulated exocytosis, ensures the timely delivery of molecules such as peptide hormones and digestive enzymes to match the moment¬-to-moment requirements of the organism. Some of the molecular components involved in this process have been identified, including Rab3 and Rab27, two GTPases that regulate the final steps of secretion in many cells. We investigated the involvement of Rab27 GTPase in the secretory process of the insulin-secreting cell line INS-1E. We found that selective reduction of Rab27 expression by RNA interference did not alter granule distribution but impaired exocytosis triggered by insulin secretagogues. Screening for potential effectors revealed that Slac2c/MyRIP is associated with granules and attenuation of Slac2c expression severely impaired hormone release. This protein contains several functional domains, including, a binding domain for the cellular cytoskeleton constituent actin. Taken together our data suggest the Rab27 and MyRIP are part of a complex mediating the interaction of secretory granules with cortical cytoskeleton and participate to the regulation of the final steps in insulin exoctytosis. In the second part of the thesis, we studied phosphoinositides (PI). Phosphoinositides are important molecules involved in the regulation of vesicular trafficking. We found that phosphatidylinosito1-4-phosphate (PI4P) and phosphatidylinosito1-4,5-biphosphate (PI(4,5)P2) increase the secretory response triggered by 10µM Ca2+ in streptolysin-O permeabilized insulin-secreting INS-1E cells. In addition, nutrient-induced exocytosis was diminished in intact cells expressing constructs that sequester PI(4,5)P2. A similar decrease was observed after silencing of two enzymes involved in PI(4,5)P2 production, type III PI4Kinase β and type I PIP5Kinase γ, by RNA interference. To clarify the mechanism of action of PI, we investigated the involvement in the regulation of exocytosis of three potential PI targets, PLD1, CAPS1 and Mint1. Transfection of cells with silencers capable of reducing the endogenous levels of these proteins inhibited hormone release elicited by glucose. Our data indicate that the production PI(4,5)P2 is necessary for proper control of p-cell secretion and suggest that at least part of the effects of PI on insulin exocytosis could be exerted through the activation of PLD1, CAPS1 and Mint1.