943 resultados para Membrana de alumina anódica
Avaliação clínica e radiográfica de pacientes submetidos ao levantamento da membrana do seio maxilar
Resumo:
Implant dentistry is a dental specialty which presents great predictability in the rehabilitation at posterior, partially edentulous maxillary areas. Early tooth loss results in significant jaw remodeling. The maxillary sinus lifting followed by implant placement is a predictable technique initially described in 1980. Since then, several different techniques have been investigated varying filling materials and the management of complications in order to provide effective guidance in the rehabilitation of these patients. The current study evaluated ten patients who underwent sinus lifting before implant placement and crown installation. First, a retrospective analysis of the medical records was conducted to obtain information about possible postoperative complications. Clinical and radiographic analyses were performed at baseline and 180 days after surgeries. The sinus lifting with immediate implant placement provided satisfactory outcomes and can be considered a safe procedure. Treatment predictability was demonstrated in 90% of patients and for 86.96% of implants placed. It is important to highlight knowledge of anatomical structures at this area, the use of delicate surgical techniques, and strict patient follow-up.
Resumo:
The constant petrol fuel leak in gas stations has caused concern in many countries around the world. Those fuels have toxic organic compounds in their composition, like Polycyclic Aromatic Hydrocarbons (PAH), which are harmful to the human health. In this work the efficiency of the protection layer with a High Density Polyethylene (HDPE) membrane of 2.5 mm thickness was evaluated. The study was based in the diffusive process in the intact membrane by a permeameter developed to evaluate the diffusive process. The membrane was putted in the middle of the system to separate two sides: a local soil impregnated with diesel oil (in one side) and pure water (in the other side). The chromatography technique was conducted to evaluate the contamination in the pure water. The analyses were made monthly in a total period of 6 months of research. The results tests show that the membrane was less effective to antracene and naphthalene compounds. Despite that, the results showed that the HDPE membrane is a good alternative to prevent contamination of water and soil by the compounds under study up to one year, based on the performance in the time of study.
Resumo:
This work evaluated the effect of vinasse (residue from sugar cane) in high density polyethylene (HDPE) geomembranes having in mind that it is deposited at temperatures of 80-90˚C on the geomembrane in storage tanks. The objective was to evaluate the resistance of the geomembrane in contact with residue in a total period of 4 months. Physical and mechanical tests, and thermogravimetric analysis (TGA) were used to determine degradation of polymer membranes after chemical immersion. In general, the results obtained show that the vinasse affected the geomembranes significantly in some aspects, for instance, the thickness of the material presented a variation of 7.8%. The average values in both directions at yielding showed a significant loss of tensile strength (34.13%) and strain (23.48%) and an increase in the modulus of elasticity (9.63%). At the rupture the behavior presented the same trend: a loss of 32% for tensile strength and 24.4% for the deformation were observed. Tear strength presented small decrease (4.72%) and puncture resistance a increase of 7.9% after immersion of geomembranes. The TGA tests were not efficient to detect evidence of degradation in samples of geomembranes after exposures, but identified problems in the quality of the supplied material.
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
Machining is one of the most commonly manufacturing processes used in the modern world, consuming millions of dollars annually. Because of this, it is crucial for the automotive industry to reduce costs on their heat-resistant alloy machining processes, such as compacted graphite iron (CGI), which has shown an increasing trend of its application in diesel engine blocks, brakes disks, among other applications, due to its superior mechanical properties to gray cast iron. Despite this advantage, its use is still limited due to its difficulty of machining, moreover, cutting tools are displayed as the main factor in increasing the machining cost. Seeking an alternative to a better machinability of CGI, this paper aims to study two types of ceramic tools developed in Brazil, and benchmark their performance by dry turning. For this, were used CGI class 450 and two tools: ceramic of silicon nitride (Si3N4) and alumina-based (Al2O3), with a cutting speed (Vc) of 300, 400 and 500 m / min; feed (f) of 0.2 mm / rev and depth of cut (ap) of 0.5 mm, using three replicates and starting with new cutting edges. The results showed that the Al2O3 tool had the best performance in Vc of 500 m / min, while the Si3N4 tool had the best results in Vc of 300 m / min. This can be explained by the tool of Si3N4 based include soft intergranular phase, called amorphous, while alumina has higher abrasion resistance due to its high refractoriness. The results make it clear that the tools have significant potential for machining of compacted graphite iron, being necessary a strict control of the cutting parameters used
Resumo:
Direct methanol fuel cells (DMFCs) without external pumps or other ancillary devices for fuel and oxidant supply are known as passive DMFCs and are potential candidates to replace lithium-ion batteries in powering portable electronic devices. This paper presents the results obtained from a membrane electrode assembly (MEA) specifically designed for passive DMFCs. Appropriated electrocatalysts were prepared and the effect of their loadings was investigated. Two types of gas diffusion layers (GDL) were also tested. The influence of the methanol concentration was analyzed in each case. The best MEA performance presented a maximum power density of 11.94 mW cm-2.
Resumo:
Machining is one of the most commonly manufacturing processes used in the modern world, consuming millions of dollars annually. Because of this, it is crucial for the automotive industry to reduce costs on their heat-resistant alloy machining processes, such as compacted graphite iron (CGI), which has shown an increasing trend of its application in diesel engine blocks, brakes disks, among other applications, due to its superior mechanical properties to gray cast iron. Despite this advantage, its use is still limited due to its difficulty of machining, moreover, cutting tools are displayed as the main factor in increasing the machining cost. Seeking an alternative to a better machinability of CGI, this paper aims to study two types of ceramic tools developed in Brazil, and benchmark their performance by dry turning. For this, were used CGI class 450 and two tools: ceramic of silicon nitride (Si3N4) and alumina-based (Al2O3), with a cutting speed (Vc) of 300, 400 and 500 m / min; feed (f) of 0.2 mm / rev and depth of cut (ap) of 0.5 mm, using three replicates and starting with new cutting edges. The results showed that the Al2O3 tool had the best performance in Vc of 500 m / min, while the Si3N4 tool had the best results in Vc of 300 m / min. This can be explained by the tool of Si3N4 based include soft intergranular phase, called amorphous, while alumina has higher abrasion resistance due to its high refractoriness. The results make it clear that the tools have significant potential for machining of compacted graphite iron, being necessary a strict control of the cutting parameters used
Resumo:
Ion implantation of metal species into insulators provides a tool for the formation of thin, electrically conducting, surface layers with experimenter-controlled resistivity. High energy implantation of Pt and Ti into alumina accelerator components has been successfully employed to control high voltage surface breakdown in a number of cases. In the work described here we have carried out some basic investigations related to the origin of this phenomenon. By comparison of the results of alumina implanted with Ti at 75 keV with the results of prior investigations of polymers implanted with Pt at 49 eV and Au at 67 eV, we describe a physical model of the effect based on percolation theory and estimate the percolation parameters for the Ti-alumina composite. We estimate that the percolation dose threshold is about 4 x 10(16) cm(-2) and the maximum dose for which the system remains an insulator-conductor composite is about 10 x 10(16) cm(-2). The saturation electrical conductivity is estimated to be about 50 S/m. We conclude that the observed electrical conductivity properties of Ti-implanted alumina can be satisfactorily described by percolation theory. (C) 2012 American Institute of Physics. [http://dx.doi.org/10.1063/1.3697900]
Resumo:
Aim. This work tested the effect of the addition of Al2O3/GdAlO3 longitudinal fibers in different contents to veneering porcelain of two dental all ceramic systems. Methods: Fibers (0.5 mm diameter) obtained by the Laser Heated Pedestal Growth (LHPG) method were added to bar-shaped specimens made by veneer porcelain (monolayers) or both the veneer and the core ceramic (bilayers) of two all-ceramic systems: In-Ceram Alumina - glass infiltrated alumina composite (GIA) and In-Ceram 2000 AL Cubes - alumina polycrystal (AP) (VITA Zahnfabrik). The longitudinal fibers were added to veneering porcelain (VM7) in two different proportions: 10 or 17 vol%. The bars were divided into nine experimental conditions (n = 10) according to material used: VM7 porcelain monolayers, VM7/GIA, VM7/AP; and according to the amount of fibers within the porcelain layer: no fibers, 10 vol% or 17 vol%. After grinding and polishing the specimens were submitted to a three point bending test (crosshead speed = 0.5 mm/min) with porcelain positioned at tensile side. Data were analyzed by means of one-way ANOVA and a Tukey's test (alpha = 5%). Scanning electronic microscopy (SEM) was conducted for fractographic analysis. Results. Regarding the groups without fiber addition, VM7/AP showed the highest flexural strength (MPa), followed by VM7/GIA and VM7 monolayers. The addition of fibers led to a numerical increase in flexural strength for all groups. For VM7/GIA bilayers the addition of 17 vol% of fibers resulted in a significant 48% increase in the flexural strength compared to the control group. Fractographic analysis revealed that the crack initiation site was in porcelain at the tensile surface. Cracks also propagated between fibers before heading for the alumina core. Conclusions. The addition of 17 vol% of Al2O3/GdAlO3 longitudinal fibers to porcelain/glass infiltrated alumina bilayers significantly improved its flexural strength. 10 vol% or 17 vol% of fibers inclusion increased the flexural strength for all groups. (C) 2011 Elsevier Ltd. All rights reserved.
Resumo:
Objectives: To compare the biomechanical fixation and histomorphometric parameters between two implant surfaces: non-washed resorbable blasting media (NWRBM) and alumina-blasted/acid-etched (AB/AE), in a dog model. Material and methods: The surface topography was assessed by scanning electron microscopy, optical interferometry and chemistry by X-ray photoelectron spectroscopy (XPS). Six beagle dogs of similar to 1.5 years of age were utilized and each animal received one implant of each surface per limb (distal radii sites). After a healing period of 3 weeks, the animals were euthanized and half of the implants were biomechanically tested (removal torque) and the other half was referred to nondecalcified histology processing. Histomorphometric analysis considered bone-to-implant contact (BIC) and bone area fraction occupancy (BAFO). Following data normality check with the Kolmogorov-Smirnov test, statistical analysis was performed by paired t-tests at 95% level of significance. Results: Surface roughness parameters Sa (average surface roughness) and Sq (mean root square of the surface) were significantly lower for the NWRBM compared with AB/ AE. The XPS spectra revealed the presence of Ca and P in the NWRBM. While no significant differences were observed for both BIC and BAFO parameters (P>0.35 and P>0.11, respectively), a significantly higher level of torque was observed for the NWRBM group (P = 0.01). Bone morphology was similar between groups, which presented newly formed woven bone in proximity with the implant surfaces. Conclusion: A significant increase in early biomechanical fixation was observed for implants presenting the NWRBM surface.
Resumo:
Tribochemical silica-coating is the recommended conditioning method for improving glass-infiltrated alumina composite adhesion to resin cement. High-intensity lasers have been considered as an alternative for this purpose. This study evaluated the morphological effects of Er,Cr:YSGG laser irradiation on aluminous ceramic, and verified the microtensile bond strength of composite resin to ceramic following silica coating or laser irradiation. In-Ceram Alumina ceramic blocks were polished, submitted to airborne particle abrasion (110 mu m Al(2)O(3)), and conditioned with: (CG) tribochemical silica coating (110 mu m SiO(2)) + silanization (control group); (L1-L10) Er,Cr:YSGG laser (2.78 mu m, 20 Hz, 0.5 to 5.0 W) + silanization. Composite resin blocks were cemented to the ceramic blocks with resin cement. These sets were stored in 37A degrees C distilled water (24 h), embedded in acrylic resin, and sectioned to produce bar specimens that were submitted to microtensile testing. Bond strength values (MPa) were statistically analyzed (alpha a parts per thousand currency sign0.05), and failure modes were determined. Additional ceramic blocks were conditioned for qualitative analysis of the topography under SEM. There were no significant differences among silicatization and laser treatments (p > 0.05). Microtensile bond strength ranged from 19.2 to 27.9 MPa, and coefficients of variation ranged from 30 to 55%. Mixed failure of adhesive interface was predominant in all groups (75-96%). No chromatic alteration, cracks or melting were observed after laser irradiation with all parameters tested. Surface conditioning of glass-infiltrated alumina composite with Er,Cr:YSGG laser should be considered an innovative alternative for promoting adhesion of ceramics to resin cement, since it resulted in similar bond strength values compared to the tribochemical treatment.
Resumo:
In a ball-on-disc wear test, an alumina ceramic body sliding against a silicon nitride ceramic body in water achieved an ultra-low friction coefficient (ULFC) of 0.004. The profilometer and EDX measurements indicated that the ULFC regime in this unmated Al2O3-Si3N4 pair was achieved because of the formation of a flat and smooth interface of nanometric roughness, which favored the hydrodynamic lubrication. The triboreactions formed silicon and aluminum hydroxides which contributed to decrease roughness and shear stress at the contact interface. This behavior enables the development of low energy loss water-based tribological systems using oxide ceramics. 13 2012 Elsevier B.V. All rights reserved.
Resumo:
We describe an approach to ion implantation in which the plasma and its electronics are held at ground potential and the ion beam is injected into a space held at high negative potential, allowing considerable savings both economically and technologically. We used an “inverted ion implanter” of this kind to carry out implantation of gold into alumina, with Au ion energy 40 keV and dose (3–9) × 1016 cm−2. Resistivity was measured in situ as a function of dose and compared with predictions of a model based on percolation theory, in which electron transport in the composite is explained by conduction through a random resistor network formed by Au nanoparticles. Excellent agreement is found between the experimental results and the theory.