992 resultados para Maturity stage
Resumo:
Ichthyoplankton surveys have been used to provide an independent estimate of adult spawning biomass of commercially exploited species and to further our understanding of the recruitment processes in the early life stages. However, predicting recruitment has been difficult because of the complex interaction of physical and biological processes operating at different spatial and temporal scales that can occur at the different life stages. A model of first-year life-stage recruitment was applied to Georges Bank Atlantic cod (Gadus morhua) and haddock (Melanogrammus aeglefinus) stocks over the years 1977–2004 by using environmental and densitydependent relationships. The best lifestage mortality relationships for eggs, larvae, pelagic juveniles, and demersal juveniles were first determined by hindcasting recruitment estimates based on egg and larval abundance and mortality rates derived from two intensive sampling periods, 1977–87 and 1995–99. A wind-driven egg mortality relationship was used to estimate losses due to transport off the bank, and a wind-stress larval mortality relationship was derived from feeding and survival studies. A simple metric for the density-dependent effects of Atlantic cod was used for both Atlantic cod and haddock. These life stage proxies were then applied to the virtual population analysis (VPA) derived annual egg abundances to predict age-1 recruitment. Best models were determined from the correlation of predicted and VPA-derived age-1 abundance. The larval stage was the most quantifiable of any stage from surveys, whereas abundance estimates of the demersal juvenile stage were not available because of undersampling. Attempts to forecast recruitment from spawning stock biomass or egg abundance, however, will always be poor because of variable egg survival.
Resumo:
The hypothesis that heavy fishing pressure has led to changes in the biological characteristics of the estuary cobbler (Cnidoglanis macrocephalus) was tested in a large seasonally open estuary in southwestern Australia, where this species completes its life cycle and is the most valuable commercial fish species. Comparisons were made between seasonal data collected for this plotosid (eeltail catfish) in Wilson Inlet during 2005–08 and those recorded with the same fishery-independent sampling regime during 1987–89. These comparisons show that the proportions of larger and older individuals and the catch rates in the more recent period were far lower, i.e., they constituted reductions of 40% for fish ≥430 mm total length, 62% for fish ≥4 years of age, and 80% for catch rate. In addition, total mortality and fishing-induced mortality estimates increased by factors of ~2 and 2.5, respectively. The indications that the abundance and proportion of older C. macrocephalus declined between the two periods are consistent with the perception of long-term commercial fishermen and their shift toward using a smaller maximum gill net mesh to target this species. The sustained heavy fishing pressure on C. macrocephalus between 1987–89 and 2005–08 was accompanied by a marked reduction in length and age at maturity of this species. The shift in probabilistic maturation reaction norms toward smaller fish in 2005–08 and the lack of a conspicuous change in growth between the two periods indicate that the maturity changes were related to fishery-induced evolution rather than to compensatory responses to reduced fish densities.
Resumo:
The stage-specific distribution of Alaska plaice (Pleuronectes quadrituberculatus) eggs in the southeastern Bering Sea was examined with collections made in mid-May in 2002, 2003, 2005, and 2006. Eggs in the early stages of development were found primarily offshore of the 40-m isobath. Eggs in the middle and late stages of development were found inshore and offshore of the 40-m isobath. There was some evidence that early-stage eggs occur deeper in the water column than late-stage eggs, although year-to-year variability in that trend was observed. Most eggs were in the later stages of development; therefore the majority of spawning is estimated to have occurred a few weeks before collection—probably April—and may be highly synchronized among local spawning areas. Results indicate that sampling with continuous underway fish egg collectors(CUFES) should be supplemented with sampling of the entire water column to ensure adequate samples of all egg stages of Alaska plaice. Data presented offer new information on the stage-dependent horizontal and vertical distribution of Alaska plaice eggs in the Bering Sea and provide further evidence that the early life history stages of this species are vulnerable to near-surface variations in hydrographical conditions and climate forcing.
Resumo:
A case study of the reproductive biology of the endemic Hawaiian grouper or hapu’upu’u (Hyporthodus quernus) is presented as a model for comprehensive future studies of economically important epinephelid groupers. Specimens were collected throughout multiple years (1978–81, 1992–93, and 2005–08) from most reefs and banks of the Northwestern Hawaiian Islands. The absence of small males, presence of atretic oocytes and brown bodies in testes of mature males, and both developed ovarian and testicular tissues in the gonads of five transitional fish provided evidence of protogynous hermaphroditism. No small mature males were collected, indicating that Hawaiian grouper are monandrous (all males are sex-changed females). Complementary microscopic criteria also were used to assign reproductive stage and estimate median body sizes (L50) at female sexual maturity and at adult sex change from female to male. The L50 at maturation and at sex change was 580 ±8 (95% confidence interval [CI]) mm total length (TL) and 895 ±20 mm TL, respectively. The adult sex ratio was strongly female biased (6:1). Spawning seasonality was described by using gonadosomatic indices. Females began ripening in the fall and remained ripe through April. A February–June main spawning period that followed peak ripening was deduced from the proportion of females whose ovaries contained hydrated oocytes, postovulatory follicles, or both. Testes weights were not affected by season; average testes weight was only about 0.2% of body weight—an order of magnitude smaller than that for ovaries that peaked at 1–3% of body weight. The species’ reproductive life history is discussed in relation to its management.
Resumo:
The dusky rockfish (Sebastes variabilis) has recently been resurrected as a distinct species in the genus Sebastes. Reproductive biology and growth were examined for this redescribed species in the central Gulf of Alaska. Age and length at 50% maturity were 9.2 years and 365 mm fork length, respectively, which are lower than previously reported. Fertilized ova and eyed embryos were observed in April and evidence of postparturition was not observed until May. The gonadosomatic index decreased with the onset of postparturition in May. Von Bertalanffy growth parameters for female dusky rockfish, estimated from the maturity samples, were significantly different from growth parameters derived from Gulf of Alaska fishery-independent survey data.
Resumo:
The western blue groper (Achoerodus gouldii) is shown to be a temperate protogynous hermaphrodite, which spawns between early winter and mid-spring. Because A. gouldii changes body color at about the time of sex change, its color can be used as a proxy for sex for estimating the size and age at sex change and for estimating growth when it is not possible to use gonads for determining the sex of this fish. The following characteristics make A. gouldii highly susceptible to overfishing: 1) exceptional longevity, with a maximum age (70 years) that is by far the greatest yet estimated for a labrid; 2) slow growth for the first 15 years and little subsequent growth by females; and 3) late maturation at a large total length (TL50 = 653 mm) and old age (~17 years) and 4) late sex change at an even greater total length (TL50 = 821 mm) and age (~35 years). The TL50 at maturity and particularly at sex change exceeded the minimum legal total length (500 mm) of A. gouldii and the lengths of many recreationally and commercially caught fish. Many of these characteristics are found in certain deep-water fishes that are likewise considered susceptible to overfishing. Indeed, although fishing effort for A. gouldii in Western Australia is not particularly high, per-recruit analyses indicate that this species is already close to or fully exploited.
Resumo:
Arrowtooth flounder (Atheresthes stomias) has had the highest abundance of any groundfish species in the Gulf of Alaska since the 1970s (Matarese et al., 2003; Turnock et al., 2005; Blood et al., 2007); however, commercial catches have been restricted because Pacific halibut (Hippoglossus stenolepis) are caught as bycatch in the fishery. Arrowtooth flounder plays a key role in the ecosystem because it is a dominant organism within the food web, both as an apex predator of fish and invertebrates, as well as an important prey for walleye pollock (Theragra chalcogramma; Aydin et al., 2002). Walleye pollock is the dominant groundfish in the Bering Sea, a principal groundfish in the Gulf of Alaska, and the primary prey for marine mammals. The distribution of arrowtooth flounder extends from Cape Navarin and the eastern Sea of Okhotsk in Russia, across the Bering Sea, Aleutian Islands, Gulf of Alaska, and south to the coast of central California (Shuntov, 1964; Britt and Martin, 2001; Chetvergov, 2001; Weinberg et al., 2002; Zenger, 2004). Because of the importance of arrowtooth flounder in the marine ecosystem of A laska, a maturity study of this species was undertaken to determine age-at-maturity, which is essential for age-based stock management models. Before these results, management has had to rely upon a length-at-maturity-based estimate (Zimmermann, 1997) to manage stocks in the Gulf of Alaska (GOA), Bering Sea, and Aleutian Islands. The central GOA was selected as the location for this maturity study Age- and length-at-maturity of female arrowtooth flounder (Atheresthes stomias) in the Gulf of Alaska because it contains approximately 70% of the total Gulf of Alaska arrowtooth flounder biomass (1.9×106 t, age 3 and older)— the highest percentage in the world (Shuntov, 1964; Britt and Martin, 2001; Weinberg et al., 2002; Wilderbuer and Nichol, 2006).
Resumo:
Mortality, fecundity, and size at maturity are important life history traits, and their interactions determine the evolution of life history strategies (Roff, 1992; Stearns, 1992; Charnov, 2002). These same traits are also important for population dynamics models (Hunter et al., 1992; Clark, 1999). It is increasingly important to accurately determine Greenland halibut (Reinhardtius hippoglossoides) life history traits and to correctly assess the status of its stocks because low recruitment or low biomass estimates have led to catch restrictions in the Bering Sea and Aleutian Islands (Ianelli et al.1), the Northeastern Arctic (Ådlandsvik et al., 2004), and the Northwest Atlantic (Bowering and Nedreaas, 2000).
Resumo:
We tested the hypothesis that larger juvenile sockeye salmon (Oncorhynchus nerka) in Bristol Bay, Alaska, have higher marine-stage survival rates than smaller juvenile salmon. We used scales from returning adults (33 years of data) and trawl samples of juveniles (n= 3572) collected along the eastern Bering Sea shelf during August through September 2000−02. The size of juvenile sockeye salmon mirrored indices of their marine-stage survival rate (e.g., smaller fish had lower indices of marine-stage survival rate). However, there was no relationship between the size of sockeye salmon after their first year at sea, as estimated from archived scales, and brood-year survival size was relatively uniform over the time series, possibly indicating size-selective mortality on smaller individuals during their marine residence. Variation in size, relative abundance, and marine-stage survival rate of juvenile sockeye salmon is likely related to ocean conditions affecting their early marine migratory pathways along the eastern Bering Sea shelf.
Resumo:
Blacktail comber (Serranus atricauda G
Resumo:
Age and growth estimates for salmon sharks (Lamna ditropis) in the eastern North Pacific were derived from 182 vertebral centra collected from sharks ranging in length from 62.2 to 213.4 cm pre-caudal length (PCL) and compared to previously published age and growth data for salmon sharks in the western North Pacific. Eastern North Pacific female and male salmon sharks were aged up to 20 and 17 years, respectively. Relative marginal increment (RMI) analysis showed that postnatal rings form annually between January and March. Von Bertalanffy growth parameters derived from vertebral length-at-age data are L∞ =207.4 cm PCL, k=0.17/yr, and t0=−2.3 years for females (n=166), and L∞ =182.8 cm PCL, k=0.23/yr , and t0=−1.9 years for males (n=16). Age at maturity was estimated to range from six to nine years for females (median pre-caudal length of 164.7 cm PCL) and from three to five years old for males (median precaudal length of 124.0 cm PCL). Weight-length relationships for females and males in the eastern North Pacific are W=8.2 × 10_05 × L2.759 –06 × L3.383 (r2 =0.99) and W=3.2 × 10 (r2 =0.99), respectively. Our results show that female and male salmon sharks in the eastern North Pacific possess a faster growth rate, reach sexual maturity earlier, and attain greater weight-at-length than their same-sex counterparts living in the western North Pacific.
Resumo:
This study examined the sexual differentiation and reproductive dynamics of striped mullet (Mugil cephalus L.) in the estuaries of South Carolina. A total of 16,464 specimens were captured during the study and histological examination of sex and maturity was performed on a subsample of 3670 fish. Striped mullet were sexually undifferentiated for the first 12 months, began differentiation at 13 months, and were 90% fully differentiated by 15 to 19 months of age and 225 mm total length (TL). The defining morphological characteristics for differentiating males was the elongation of the protogonial germ tissue in a corradiating pattern towards the center of the lobe, the development of primary and secondary ducts, and the lack of any recognizable ovarian wall structure. The defining female characteristics were the formation of protogonial germ tissue into spherical germ cell nests, separation of a tissue layer from the outer epithelial layer of the lobe-forming ovarian walls, a tissue bud growing from the suspensory tissue that helped form the ovary wall, and the proliferation of oogonia and oocytes. Sexual maturation in male striped mullet first occurred at 1 year and 248 mm TL and 100% maturity occurred at age 2 and 300 mm TL. Female striped mullet first matured at 2 years and 291 mm total length and 100% maturity occurred at 400 mm TL and age 4. Because of the open ocean spawning behavior of striped mullet, all stages of maturity were observed in males and females except for functionally mature females with hydrated oocytes. The spawning season for striped mullet recruiting to South Carolina estuaries lasts from October to April; the majority of spawning activity, however, occurs from November to January. Ovarian atresia was observed to have four distinct phases. This study presents morpholog ical analysis of reproductive ontogeny in relation to size and age in South Carolina striped mullet. Because of the length of the undifferentiated gonad stage in juvenile striped mullet, previous studies have proposed the possibility of protandric hermaphrodism in this species. The results of our study indicate that striped mullet are gonochoristic but capable of exhibiting nonfunctional hermaphroditic characteristics in differentiated mature gonads.