885 resultados para Matrix-Variate Distributions
Resumo:
Thomas-Fermi theory is developed to evaluate nuclear matrix elements averaged on the energy shell, on the basis of independent particle Hamiltonians. One- and two-body matrix elements are compared with the quantal results, and it is demonstrated that the semiclassical matrix elements, as function of energy, well pass through the average of the scattered quantum values. For the one-body matrix elements it is shown how the Thomas-Fermi approach can be projected on good parity and also on good angular momentum. For the two-body case, the pairing matrix elements are considered explicitly.
Resumo:
The extension of density functional theory (DFT) to include pairing correlations without formal violation of the particle-number conservation condition is described. This version of the theory can be considered as a foundation of the application of existing DFT plus pairing approaches to atoms, molecules, ultracooled and magnetically trapped atomic Fermi gases, and atomic nuclei where the number of particles is conserved exactly. The connection with Hartree-Fock-Bogoliubov (HFB) theory is discussed, and the method of quasilocal reduction of the nonlocal theory is also described. This quasilocal reduction allows equations of motion to be obtained which are much simpler for numerical solution than the equations corresponding to the nonlocal case. Our theory is applied to the study of some even Sn isotopes, and the results are compared with those obtained in the standard HFB theory and with the experimental ones.
Resumo:
In fluid dynamical models the freeze-out of particles across a three-dimensional space-time hypersurface is discussed. The calculation of final momentum distribution of emitted particles is described for freeze-out surfaces, with both spacelike and timelike normals, taking into account conservation laws across the freeze-out discontinuity.
Resumo:
We have performed a detailed study of the zenith angle dependence of the regeneration factor and distributions of events at SNO and SK for different solutions of the solar neutrino problem. In particular, we discuss the oscillatory behavior and the synchronization effect in the distribution for the LMA solution, the parametric peak for the LOW solution, etc. A physical interpretation of the effects is given. We suggest a new binning of events which emphasizes the distinctive features of the zenith angle distributions for the different solutions. We also find the correlations between the integrated day-night asymmetry and the rates of events in different zenith angle bins. The study of these correlations strengthens the identification power of the analysis.
Resumo:
Exchange matrices represent spatial weights as symmetric probability distributions on pairs of regions, whose margins yield regional weights, generally well-specified and known in most contexts. This contribution proposes a mechanism for constructing exchange matrices, derived from quite general symmetric proximity matrices, in such a way that the margin of the exchange matrix coincides with the regional weights. Exchange matrices generate in turn diffusive squared Euclidean dissimilarities, measuring spatial remoteness between pairs of regions. Unweighted and weighted spatial frameworks are reviewed and compared, regarding in particular their impact on permutation and normal tests of spatial autocorrelation. Applications include tests of spatial autocorrelation with diagonal weights, factorial visualization of the network of regions, multivariate generalizations of Moran's I, as well as "landscape clustering", aimed at creating regional aggregates both spatially contiguous and endowed with similar features.
Resumo:
Acoustic emission avalanche distributions are studied in different alloy systems that exhibit a phase transition from a bcc to a close-packed structure. After a small number of thermal cycles through the transition, the distributions become critically stable (exhibit power-law behavior) and can be characterized by an exponent alpha. The values of alpha can be classified into universality classes, which depend exclusively on the symmetry of the resulting close-packed structure.
Resumo:
An experimental study of the acoustic emission generated during a martensitic transformation is presented. A statistical analysis of the amplitude and lifetime of a large number of signals has revealed power-law behavior for both magnitudes. The exponents of these distributions have been evaluated and, through independent measurements of the statistical lifetime to amplitude dependence, we have checked the scaling relation between the exponents. Our results are discussed in terms of current ideas on avalanche dynamics.
Resumo:
We study the problem of the partition of a system of initial size V into a sequence of fragments s1,s2,s3 . . . . By assuming a scaling hypothesis for the probability p(s;V) of obtaining a fragment of a given size, we deduce that the final distribution of fragment sizes exhibits power-law behavior. This minimal model is useful to understanding the distribution of avalanche sizes in first-order phase transitions at low temperatures.
Resumo:
The concepts of void and cluster for an arbitrary point distribution in a domain D are defined and characterized by some parameters such as volume, density, number of points belonging to them, shape, etc. After assigning a weight to each void and clusterwhich is a function of its characteristicsthe concept of distance between two point configurations S1 and S2 in D is introduced, both with and without the help of a lattice in the domain D. This defines a topology for the point distributions in D, which is different for the different characterizations of the voids and clusters.
Resumo:
Summary
Resumo:
We report variational calculations, in the hypernetted-chain (HNC)-Fermi-HNC scheme, of one-body density matrices and one-particle momentum distributions for 3He-4He mixtures described by a Jastrow correlated wave function. The 4He condensate fractions and the 3He strength poles are examined and compared with the Monte Carlo available results. The agreement has been found to be very satisfactory. Their density dependence is also studied.
Resumo:
Methods for generating beams with arbitrary polarization based on the use of liquid crystal displays have recently attracted interest from a wide range of sources. In this paper we present a technique for generating beams with arbitrary polarization and shape distributions at a given plane using a Mach-Zehnder setup. The transverse components of the incident beam are processed independently by means of spatial light modulators placed in each path of the interferometer. The modulators display computer generated holograms designed to dynamically encode any amplitude value and polarization state for each point of the wavefront in a given plane. The steps required to design such beams are described in detail. Several beams performing different polarization and intensity landscapes have been experimentally implemented. The results obtained demonstrate the capability of the proposed technique to tailor the amplitude and polarization of the beam simultaneously.
Resumo:
Summary