999 resultados para Matrix Decompositions


Relevância:

20.00% 20.00%

Publicador:

Resumo:

The axisymmetric problem of an elastic fiber perfectly bonded to a nonhomogeneous elastic matrix which contains an annular crack going through the interface into the fiber under axially symmetric shear stress is considered. The nature of the stress singularity is studied. It is shown that at the irregular point on the interface, whether the shear modulus is continuous or discontinuous the stresses are bounded. The problem is formulated in terms of a singular integral equation and can be solved by a regular method. The stress intensity factors and crack surface displacement are given.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The mechanism of ductile damage caused by secondary void damage in the matrix around primary voids is studied by large strain, finite element analysis. A cylinder embedding an initially spherical void, a plane stress cell with a circular void and plane strain cell with a cylindrical or a flat void are analysed under different loading conditions. Secondary voids of smaller scale size nucleate in the strain hardening matrix, according to the requirements of some stress/strain criteria. Their growth and coalescence, handled by the empty element technique, demonstrate distinct mechanisms of damage as circumstances change. The macroscopic stress-strain curves are decomposed and illustrated in the form of the deviatoric and the volumetric parts. Concerning the stress response and the void growth prediction, comparisons are made between the present numerical results and those of previous authors. It is shown that loading condition, void growth history and void shape effect incorporated with the interaction between two generations of voids should be accounted for besides the void volume fraction.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Furthermore, the compressed flow driven by the piston is discussed. The consistent solution of gasdynamical equations including solar gravity is obtained for the unsteady and two-dimensional configuration, which is applied to the region between the piston and shock wave. This solution may satisfy the jump conditions of shock wave, which separates the region of compressed flow and quiet corona.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Revised: 2006-05.-- Published as an article in: The Review of Economics and Statistics, 2004, vol. 86, issue 4, pp. 1034-1036.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The mechanical behaviors of the ceramic particle-reinforced metal matrix composites are modeled based on the conventional theory of mechanism-based strain gradient plasticity presented by Huang et al. Two cases of interface features with and without the effects of interface cracking will be analyzed, respectively. Through comparing the result based on the interface cracking model with experimental result, the effectiveness of the present model can be evaluated. Simultaneously, the length parameters included in the strain gradient plasticity theory can be obtained.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Background: The ability to recreate an optimal cellular microenvironment is critical to understand neuronal behavior and functionality in vitro. An organized neural extracellular matrix (nECM) promotes neural cell adhesion, proliferation and differentiation. Here, we expanded previous observations on the ability of nECM to support in vitro neuronal differentiation, with the following goals: (i) to recreate complex neuronal networks of embryonic rat hippocampal cells, and (ii) to achieve improved levels of dopaminergic differentiation of subventricular zone (SVZ) neural progenitor cells. Methods: Hippocampal cells from E18 rat embryos were seeded on PLL- and nECM-coated substrates. Neurosphere cultures were prepared from the SVZ of P4-P7 rat pups, and differentiation of neurospheres assayed on PLL- and nECM-coated substrates. Results: When seeded on nECM-coated substrates, both hippocampal cells and SVZ progenitor cells showed neural expression patterns that were similar to their poly-L-lysine-seeded counterparts. However, nECM-based cultures of both hippocampal neurons and SVZ progenitor cells could be maintained for longer times as compared to poly-L-lysine-based cultures. As a result, nECM-based cultures gave rise to a more branched neurite arborization of hippocampal neurons. Interestingly, the prolonged differentiation time of SVZ progenitor cells in nECM allowed us to obtain a purer population of dopaminergic neurons. Conclusions: We conclude that nECM-based coating is an efficient substrate to culture neural cells at different stages of differentiation. In addition, neural ECM-coated substrates increased neuronal survival and neuronal differentiation efficiency as compared to cationic polymers such as poly-L-lysine.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Carbon nanotubes have unprecedented mechanical properties as defect-free nanoscale building blocks, but their potential has not been fully realized in composite materials due to weakness at the interfaces. Here we demonstrate that through load-transfer-favored three-dimensional architecture and molecular level couplings with polymer chains, true potential of CNTs can be realized in composites as Initially envisioned. Composite fibers with reticulate nanotube architectures show order of magnitude improvement in strength compared to randomly dispersed short CNT reinforced composites reported before. The molecular level couplings between nanotubes and polymer chains results in drastic differences in the properties of thermoset and thermoplastic composite fibers, which indicate that conventional macroscopic composite theory falls to explain the overall hybrid behavior at nanoscale.