974 resultados para Materials degradation


Relevância:

20.00% 20.00%

Publicador:

Resumo:

In the avian model of myopia, retinal image degradation quickly leads to ocular enlargement. We now give evidence that regionally specific changes in ocular size are correlated with both biomechanical indices of scleral remodeling, e.g. hydration capacity and with biochemical changes in proteinase activities. The latter include a 72 kDa matrix metalloproteinase (putatively MMP-2), other gelatin-binding MMPs, an acid pH MMP and a serine protease. Specifically, we have found that increases in scleral hydrational capacity parallel increases in collagen degrading activities. Gelatin zymography reveals that eyes with 7 days of retinal image degradation have elevated levels (1.4-fold) of gelatinolytic activities at 72 and 67 kDa M(r) in equatorial and posterior pole regions of the sclera while, after 14 days of treatment, increases are no longer apparent. Lower M(r) zymographic activities at 50, 46 and 37 kDa M(r) are collectively increased in eyes treated for both 7 and 14 days (1.4- and 2.4-fold respectively) in the equator and posterior pole areas of enlarging eyes. Western blot analyses of scleral extracts with an antibody to human MMP-2 reveals immunoreactive bands at 65, 30 and 25 kDa. Zymograms incubated under slightly acidic conditions reveal that, in enlarging eyes, MMP activities at 25 and 28 kDa M(r) are increased in scleral equator and posterior pole (1.6- and 4.5-fold respectively). A TIMP-like protein is also identified in sclera and cornea by Western blot analysis. Finally, retinal-image degradation also increases (~2.6-fold) the activity of a 23.5 kDa serine proteinase in limbus, equator and posterior pole sclera that is inhibited by aprotinin and soybean trypsin inhibitor. Taken together, these results indicate that eye growth induced by retinal-image degradation involves increases in the activities of multiple scleral proteinases that could modify the biomechanical properties of scleral structural components and contribute to tissue remodeling and growth.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In the present study, we examined a panel of human breast cancer cell lines with regard to their expression of CD44 and ability to bind and degrade hyaluronan. The cell lines expressed varying amounts of different molecular weight forms of CD44 (85-200 kDa) and, in general, those that expressed the greatest amounts of CD44 were the most invasive as judged by in vitro assays. In addition, the ability to bind and degrade hyaluronan was restricted to the cell lines expressing high levels of CD44, and both these functions were blocked by an antibody to CD44 (Hermes-1). Moreover, the rate of [3H]hyaluronan degradation was highly correlated with the amount of CD44 (r = 0.951, P < 0.0001), as well as with the invasive potential of the cells. Scatchard analysis of the [3H]hyaluronan binding of these cells revealed the existence of significant differences in both their binding capacity and their dissociation constant. To determine the source of this deviation, the different molecular weight forms of CD44 were partially separated by gel filtration chromatography. In all cell lines, the 85 kDa form was able to bind hyaluronan, although with different affinities. In contrast, not all of the high molecular weight forms of CD44 had this ability. These results illustrate the diversity of CD44 molecules in invasive tumor cells, and suggest that one of their major functions is to degrade hyaluronan.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Bioremediation is a potential option to treat 1, 1, 1-trichloro-2, 2 bis (4-chlorophenyl) ethane (DDT) contaminated sites. In areas where suitable microbes are not present, the use of DDT resistant microbial inoculants may be necessary. It is vital that such inoculants do not produce recalcitrant breakdown products e.g. 1, 1-dichloro-2, 2-bis (4-chlorophenyl) ethylene (DDE). Therefore, this work aimed to screen DDT-contaminated soil and compost materials for the presence of DDT-resistant microbes for use as potential inoculants. Four compost amended soils, contaminated with different concentrations of DDT, were used to isolate DDT-resistant microbes in media containing 150 mg I -1 DDT at three temperatures (25, 37 and 55°C). In all soils, bacteria were more sensitive to DDT than actinomycetes and fungi. Bacteria isolated at 55°C from any source were the most DDT sensitive. However DDT-resistant bacterial strains showed more promise in degrading DDT than isolated fungal strains, as 1, 1-dichloro 2, 2-bis (4-chlorophenyl) ethane (DDD) was a major bacterial transformation product, while fungi tended to produce more DDE. Further studies on selected bacterial isolates found that the most promising bacterial strain (Bacillus sp. BHD-4) could remove 51% of DDT from liquid culture after 7 days growth. Of the amount transformed, 6% was found as DDD and 3% as DDE suggesting that further transformation of DDT and its metabolites occurred.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this article we study the azimuthal shear deformations in a compressible Isotropic elastic material. This class of deformations involves an azimuthal displacement as a function of the radial and axial coordinates. The equilibrium equations are formulated in terms of the Cauchy-Green strain tensors, which form an overdetermined system of partial differential equations for which solutions do not exist in general. By means of a Legendre transformation, necessary and sufficient conditions for the material to support this deformation are obtained explicitly, in the sense that every solution to the azimuthal equilibrium equation will satisfy the remaining two equations. Additionally, we show how these conditions are sufficient to support all currently known deformations that locally reduce to simple shear. These conditions are then expressed both in terms of the invariants of the Cauchy-Green strain and stretch tensors. Several classes of strain energy functions for which this deformation can be supported are studied. For certain boundary conditions, exact solutions to the equilibrium equations are obtained. © 2005 Society for Industrial and Applied Mathematics.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

An effective technique to improve the precision and throughput of energetic ion condensation through dielectric nanoporous templates and reduce nanopore clogging by using finely tuned pulsed bias is proposed. Multiscale numerical simulations of ion deposition show the possibility of controlling the dynamic charge balance on the upper template's surface to minimize ion deposition on nanopore sidewalls and to deposit ions selectively on the substrate surface in contact with the pore opening. In this way, the shapes of nanodots in template-assisted nanoarray fabrication can be effectively controlled. The results are applicable to various processes involving porous dielectric nanomaterials and dense nanoarrays.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The results of numerical simulations of nanometer precision distributions of microscopic ion fluxes in ion-assisted etching of nanoscale features on the surfaces of dielectric materials using a self-assembled monolayer of spherical nanoparticles as a mask are presented. It is shown that the ion fluxes to the substrate and nanosphere surfaces can be effectively controlled by the plasma parameters and the external bias applied to the substrate. By proper adjustment of these parameters, the ion flux can be focused onto the areas uncovered by the nanospheres. Under certain conditions, the ion flux distributions feature sophisticated hexagonal patterns, which may lead to very different nanofeature etching profiles. The results presented are generic and suggest viable ways to overcome some of the limitations of the existing plasma-assisted nanolithography.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this paper, a novel data-driven approach to monitoring of systems operating under variable operating conditions is described. The method is based on characterizing the degradation process via a set of operation-specific hidden Markov models (HMMs), whose hidden states represent the unobservable degradation states of the monitored system while its observable symbols represent the sensor readings. Using the HMM framework, modeling, identification and monitoring methods are detailed that allow one to identify a HMM of degradation for each operation from mixed-operation data and perform operation-specific monitoring of the system. Using a large data set provided by a major manufacturer, the new methods are applied to a semiconductor manufacturing process running multiple operations in a production environment.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The oxides of copper (CuxO) are fascinating materials due to their remarkable optical, electrical, thermal and magnetic properties. Nanostructuring of CuxO can further enhance the performance of this important functional material and provide it with unique properties that do not exist in its bulk form. Three distinctly different phases of CuxO, mainly CuO, Cu2O and Cu4O3, can be prepared by numerous synthesis techniques including, vapour deposition and liquid phase chemical methods. In this article, we present a review of nanostructured CuxO focusing on their material properties, methods of synthesis and an overview of various applications that have been associated with nanostructured CuxO.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Cells are the fundamental building block of plant based food materials and many of the food processing born structural changes can fundamentally be derived as a function of the deformations of the cellular structure. In food dehydration the bulk level changes in porosity, density and shrinkage can be better explained using cellular level deformations initiated by the moisture removal from the cellular fluid. A novel approach is used in this research to model the cell fluid with Smoothed Particle Hydrodynamics (SPH) and cell walls with Discrete Element Methods (DEM), that are fundamentally known to be robust in treating complex fluid and solid mechanics. High Performance Computing (HPC) is used for the computations due to its computing advantages. Comparing with the deficiencies of the state of the art drying models, the current model is found to be robust in replicating drying mechanics of plant based food materials in microscale.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Superhydrophobicity is directly related to the wettability of the surfaces. Cassie-Baxter state relating to geometrical configuration of solid surfaces is vital to achieving the Superhydrophobicity and to achieve Cassie-Baxter state the following two criteria need to be met: 1) Contact line forces overcome body forces of unsupported droplet weight and 2) The microstructures are tall enough to prevent the liquid that bridges microstructures from touching the base of the microstructures [1]. In this paper we discuss different measurements used to characterise/determine the superhydrophobic surfaces.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Taking into consideration of growing energy needs and concern for environmental degradation, clean and inexhaustible energy source, such as solar energy, is receiving greater attention for various applications. The use of solar energy system reduces pollution, waste and has little or no harmful effects on the environment. It is appreciated that this source of energy can be complementary rather than being competitive to conventional energy sources. In order to collect and harness energy from the sun, a solar collector is essential. A solar collector is basically a heat exchanger that transforms solar radiant energy into heat or thermal energy. Improvement of performance is essential for commercial acceptance of their use in such applications. Many studies have been undertaken on the enhancement of thermal performance of solar collectors, using diverse materials of various shapes, dimensions and layouts. In the literature, various collector designs have been proposed and tested with the objective of meeting these requirements [1-8]. Omer et al. [1] found the efficiency of a solar collector of about 70% in a solar assisted heat pump system. Traditional solar collectors are single phase collectors, in which the working fluid is either air or water. Different modifications are suggested and applied to improve the heat transfer between the absorber and working fluid in a collector. These modifications include the use of absorber with fins attached [2,3], corrugated absorber [4,5], matrix type absorber [6], V-groove solar air collector [7]. Karim et al. [8] approached a review of design and construction of three types (flat, vee-grooved, and finned) of air collectors. Two-phase collectors, on the other hand, have significant potential for continuous operation round the clock, when used in conjunction with a compressor, as found in a solar assisted heat-pump cycle.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Effective response by government and individuals to the risk of land degradation requires an understanding of regional climate variations and the impacts of climate and management on condition and productivity of land and vegetation resources. Analysis of past land degradation and climate variability provides some understanding of vulnerability to current and future climate changes and the information needs for more sustainable management. We describe experience in providing climate risk assessment information for managing for the risk of land degradation in north-eastern Australian arid and semi-arid regions used for extensive grazing. However, we note that information based on historical climate variability, which has been relied on in the past, will now also have to factor in the influence of human-induced climate change. Examples illustrate trends in climate for Australia over the past decade and the impacts on indicators of resource condition. The analysis highlights the benefits of insights into past trends and variability in rainfall and other climate variables based on extended historic databases. This understanding in turn supports more reliable regional climate projections and decision support information for governments and land managers to better manage the risk of land degradation now and in the future.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

"The extended drought periods in each degradation episode have provided a test of the capacity of grazing systems (i.e. land, plants, animals, humans and social structure) to handle stress. Evidence that degradation was already occurring was identified prior to the extended drought sequences. The sequence of dry years, ranging from two to eight years, exposed and/or amplified the degradation processes. The unequivocal evidence was provided by: (a) the physical 'horror' of bare landscapes, erosion scalds and gullies and dust storms; (b) the biological devastation of woody weeds and animal suffering/deaths or forced sales, and; (c) the financial and emotional plight of graziers and their families due to reduced production in some cases leading to abandonment of properties or, sadly, deaths (e.g. McDonald 1991, Ker Conway 1989)."--Publisher website