998 resultados para Materiais resistentes a corrosão
Resumo:
In this work the adsorption features of zeolites (NaY, Beta, Mordenite and ZSM-5) have been combined with the magnetic properties of iron oxides in a composite to produce a magnetic adsorbent. These magnetic composites can be used as adsorbents for contaminants in water and subsequently removed from the medium by a simple magnetic process. The magnetic zeolites were characterized by XRD, magnetization measurements, chemical analyses, N2 adsorption isotherms and Mössbauer spectroscopy. These magnetic adsorbents show remarkable adsorption capacity for metal ion contaminants in water.
Resumo:
Very often hydrochloric acid is employed in acidification operations aiming to dissolve the mineral matrix in petroleum wheel operations, which always require intense use of corrosion inhibitors. This work presents an evaluation of common indicators, phenolfthaleine, fluorescein, methylene blue, alizarine S and methyl orange, as corrosion inhibitors for carbon steel in HCl 15% w/v at temperatures of 26, 40 and 60 ºC. Fluorescein and methyl orange show excelent corrosion inhibition efficiencies at 26 ºC; however at 60 ºC only fluorescein shows good corrosion inhibition when employed with alcohol and/or formaldehyde. For the fluorescein 1% w/v + formaldehyde 0.6% w/v mixture we present polarization and impedance curves and adsorption isotherms.
Resumo:
In this paper the current status of fuel cells is described with particular emphasis on high (T > 800 ºC) and intermediate (T < 800 ºC) temperature solid oxide fuel cells. Also the importance of the fuel cell technology is shown. Reviewed are the fundamental features, the basic principles, types of fuel cell, fabrication methods, cell configurations and the development of components (cathodes, anodes, electrolytes, interconnect) and materials.
Resumo:
A study on optimization of bath parameters for electrodeposition of Fe-W-B alloys from plating baths containing ammonia and citrate is reported. A 2³ full factorial design was successfully employed for experimental design analysis of the results. The corrosion resistance and amorphous character were evaluated. The bath conditions obtained for depositing the alloy with good corrosion resistance were: 0.01 M iron sulfate, 0.10 M sodium tungstate and 0.60 M ammonium citrate. The alloy was deposited at 12% current efficiency. The alloy obtained had Ecorr -0.841 V and Rp 1.463 x 10(4) Ohm cm². The deposit obtained under these conditions had an amorphous character and no microcracks were observed on its surface. Besides this, the bath conditions obtained for depositing the alloy with the highest deposition efficiency were: 0.09 M iron sulfate, 0.30 M sodium tungstate and 0.50 M ammonium citrate. The alloy was deposited at 50% current efficiency, with an average composition of 34 wt% W, 66 wt% Fe and traces of boron. The alloy obtained had Ecorr -0.800 V and Rp 1.895 x 10³ Ohm cm². Electrochemical corrosion tests verified that the Fe-W-B alloy deposited under both conditions had better corrosion resistance than Fe-Mo-B.
Resumo:
Fundamental aspects of the conception and applications of ecomaterials, in particular porous materials in the perspective of green chemistry are discussed in this paper. General recommendations for description and classification of porous materials are reviewed briefly. By way of illustration, some case studies of materials design and applications in pollution detection and remediation are described. It is shown here how different materials developed by our groups, such as porous glasses, ecomaterials from biomass and anionic clays were programmed to perform specific functions. A discussion of the present and future of ecomaterials in green chemistry is presented along with important key goals.
Resumo:
The use of biomass as raw-material for obtaining chemicals, polymers and fuels is emerging as a clever alternative solution for the increasing energy demand, environmental awareness and petroleum shortage. In this work, some attempts in order to develop catalytic systems suitable for triglyceride transformation into fuels, polymers and intermediates are reviewed.
Resumo:
This paper shows different aspects related to the application of different thermal analysis techniques in the study of energetic materials. The criteria used to choose the best technique and an exact approach to adjust the experimental data with a proper model are here discussed. The paper shows how to use the different thermal analysis results to help develop new compounds, to study the stability of some energetic materials and their compatibility, and the conditions necessary for a secure storing environment.
Resumo:
The effectiveness of microemulsions (ME) of saponified coconut oil (OCS-ME) and diphenylcarbazide (DC-ME) on a carbon steel corrosion inhibition process was evaluated using an electrochemical method of polarization resistance. The ME was prepared with OCS, butanol, kerosene and saline solutions. OCS-ME and DC-ME showed highest inhibitions effects (77% and 92%, respectively) at lower concentrations (0.5% and 0.48 - 0.50%, respectively). The surfactant OCS (in H2O) showed lower efficiency (63% at 0.20 - 0.25% concentration). The greatest inhibitory effect of DC-ME could be correlated with the chemical structure and the rich O/W ME system, which are very important for adsorption phenomena in interfacial ME systems.
Resumo:
An overview of different aspects related to Materials and Nanomaterials Chemistry is presented and discussed. The insertion of this field in Brazil is evaluated on the basis of the communications presented on the 30th Annual Meeting of the Brazilian Chemical Society (SBQ). The importance of the Materials Chemistry Division of SBQ for the growth and consolidation of Materials Chemistry in Brazil is also discussed.
Resumo:
Materials based on pure iron oxide and impregnated with niobia (Nb2O5) were prepared. Their catalytic activities were tested on the oxidation of compounds present in the wastewater from the processing of coffee berries. Particularly caffeine and catechol were tested. The oxidation reactions were carried out with the following systems (i) UV/H2O2, (ii) photo-Fenton and (iii) heterogeneous Fenton. All materials were characterized with X-ray diffraction, Mössbauer and infrared spectroscopy. Iron was mainly in the forms of goethite and maghemite. The oxidation kinetics were monitored by UV-vis and the oxidation products were monitored by mass spectrometry. The photo-Fenton reaction presented highest oxidation efficiency, removing 98% of all caffeine and catechol contents.
Resumo:
Rare earth ion doped solid state materials are the most important active media of near-infrared and visible lasers and other photonic devices. In these ions, the occurrence of Excited State Absorptions (ESA), from long lived electronic levels, is commonplace. Since ESA can deeply affect the efficiencies of the rare earth emissions, evaluation of these transitions cross sections is of greatest importance in predicting the potential applications of a given material. In this paper a detailed description of the pump-probe technique for ESA measurements is presented, with a review of several examples of applications in Nd3+, Tm3+ and Er3+ doped materials.
Resumo:
This work presents the results of morphological and physical-chemical characteristics of a sugar cane bagasse ash material sample produced under controlled burning conditions. The investigation was carried out by analyzing chemical composition, X-ray diffraction, 29Si nuclear magnetic resonance, morphology, thermal analysis, particle size, specific surface, and density. Moreover, the pozzolanic activity of the ash was evaluated by pozzolanic activity index and Chapelle's method. The results suggest that the sugar cane bagasse ash has adequate properties to be used as pozzolan in construction materials.
Resumo:
A commercial corrosion inhibitor used in petroleum production was characterized by means of infrared spectroscopy and energy dispersive spectroscopy (EDS). Predicting the adsorption behavior of corrosion inhibitor onto steel, sandstone and esmectite is the key to improve working conditions. In this study, the adsorption kinetics of inhibitor formulations in HCl 15% or in Mud Acid (HCl 13,5% and ammonium bifluoride) onto steel, sandstone and esmectite was determined by means of spectrophotometry. Kinetic parameters indicated that adsorption of inhibitor in the presence of bifluoride was favored. Moreover, the adsorption constant rate was the largest when the substrate was esmectite.
Resumo:
Fuels and biofuels have a major importance in the transportation sector of any country, contributing to their economic development. The utilization of these fuels implies their closer contact to metallic materials, which comprise vehicle, storage, and transportation systems. Thus, metallic corrosion could be related to fuels and biofuels utilization. Specially, the corrosion associated to gasoline, ethanol, diesel, biodiesel, and their mixtures is discussed in this article. Briefly, the ethanol is the most corrosive and gasoline the least. Few investigations about the effect of biodiesel indicate that the corrosion is associated to their unsaturation degree and the corrosion of diesel is related to its acidity.
Resumo:
This review deals with silica based hybrid materials obtained by the sol-gel method. It involves concepts, classifications and important definitions regarding the sol-gel method that allows obtaining materials with organic and inorganic components dispersed in a molecular or nanometric level. We discuss the properties and characteristics of hybrid materials related to experimental synthesis conditions. We devote a special attention to the nanostructured materials, where the self-organization is imposed by the organic component. Finally, we present some important applications of these materials based on their specific properties.