926 resultados para Mate sampling
Resumo:
We present a new method for estimating the expected return of a POMDP from experience. The estimator does not assume any knowle ge of the POMDP and allows the experience to be gathered with an arbitrary set of policies. The return is estimated for any new policy of the POMDP. We motivate the estimator from function-approximation and importance sampling points-of-view and derive its theoretical properties. Although the estimator is biased, it has low variance and the bias is often irrelevant when the estimator is used for pair-wise comparisons.We conclude by extending the estimator to policies with memory and compare its performance in a greedy search algorithm to the REINFORCE algorithm showing an order of magnitude reduction in the number of trials required.
Resumo:
Resumen tomado de la publicaci??n
Resumo:
Cualquier hecho hist??rico es dif??cil de comprender por los alumnos debido a la abstracci??n que deben hacer y por imaginar una forma de vida, en este caso, la Prehistoria, muy diferente a la que llevamos actualmente. Para una mejor comprensi??n y un conocimiento de los antepasados que poblaron la zona, los alumnos se convertir??n en personajes de la ??poca tratada y realizar??n las mismas vivencias que los hombres prehist??ricos. Los escenarios de grabaci??n ser??n la playa de Cuevas de Mar y alrededores, las cuevas de la zona y los bosques. El resultado es un v??deo cuyos autores son el grupo de teatro del C.P. de Nueva, los di??logos son de Arsenio Gonz??lez y Fernando Bada.
Resumo:
In populational sampling it is vitally important to clarify and discern: first, the design or sampling method used to solve the research problem; second, the sampling size, taking into account different components (precision, reliability, variance); third, random selection and fourth, the precision estimate (sampling errors), so as to determine if it is possible to infer the obtained estimates from the target population. The existing difficulty to use concepts from the sampling theory is to understand them with absolute clarity and, to achieve it, the help from didactic-pedagogical strategies arranged as conceptual “mentefactos” (simple hierarchic diagrams organized from propositions) may prove useful. This paper presents the conceptual definition, through conceptual “mentefactos”, of the most important populational probabilistic sampling concepts, in order to obtain representative samples from populations in health research.
Resumo:
One of the key aspects in 3D-image registration is the computation of the joint intensity histogram. We propose a new approach to compute this histogram using uniformly distributed random lines to sample stochastically the overlapping volume between two 3D-images. The intensity values are captured from the lines at evenly spaced positions, taking an initial random offset different for each line. This method provides us with an accurate, robust and fast mutual information-based registration. The interpolation effects are drastically reduced, due to the stochastic nature of the line generation, and the alignment process is also accelerated. The results obtained show a better performance of the introduced method than the classic computation of the joint histogram
Resumo:
In this paper, we present view-dependent information theory quality measures for pixel sampling and scene discretization in flatland. The measures are based on a definition for the mutual information of a line, and have a purely geometrical basis. Several algorithms exploiting them are presented and compare well with an existing one based on depth differences
Resumo:
In this paper we address the problem of extracting representative point samples from polygonal models. The goal of such a sampling algorithm is to find points that are evenly distributed. We propose star-discrepancy as a measure for sampling quality and propose new sampling methods based on global line distributions. We investigate several line generation algorithms including an efficient hardware-based sampling method. Our method contributes to the area of point-based graphics by extracting points that are more evenly distributed than by sampling with current algorithms
Resumo:
Roadside surveys such as the Breeding Bird Survey (BBS) are widely used to assess the relative abundance of bird populations. The accuracy of roadside surveys depends on the extent to which surveys from roads represent the entire region under study. We quantified roadside land cover sampling bias in Tennessee, USA, by comparing land cover proportions near roads to proportions of the surrounding region. Roadside surveys gave a biased estimate of patterns across the region because some land cover types were over- or underrepresented near roads. These biases changed over time, introducing varying levels of distortion into the data. We constructed simulated population trends for five bird species of management interest based on these measured roadside sampling biases and on field data on bird abundance. These simulations indicated that roadside surveys may give overly negative assessments of the population trends of early successional birds and of synanthropic birds, but not of late-successional birds. Because roadside surveys are the primary source of avian population trend information in North America, we conclude that these surveys should be corrected for roadside land cover sampling bias. In addition, current recommendations about the need to create more early successional habitat for birds may need reassessment in the light of the undersampling of this habitat by roads.
Resumo:
Grassland bird species continue to decline steeply across North America. Road-based surveys such as the North American Breeding Bird Survey (BBS) are often used to estimate trends and population sizes and to build species distribution models for grassland birds, although roadside survey counts may introduce bias in estimates because of differences in habitats along roadsides and in off-road surveys. We tested for differences in land cover composition and in the avian community on 21 roadside-based survey routes and in an equal number of adjacent off-road walking routes in the grasslands of southern Alberta, Canada. Off-road routes (n = 225 point counts) had more native grassland and short shrubs and less fallow land and road area than the roadside routes (n = 225 point counts). Consequently, 17 of the 39 bird species differed between the two route types in frequency of occurrence and relative abundance, measured using an indicator species analysis. Six species, including five obligate grassland species, were more prevalent at off-road sites; they included four species listed under the Canadian federal Species At Risk Act or listed by the Committee on the Status of Endangered Wildlife in Canada: Sprague’s Pipit (Anthus spragueii), Baird’s Sparrow (Ammodramus bairdii), the Chestnut-collared Longspur (Calcarius ornatus), and McCown’s Longspur (Rhynchophanes mccownii). The six species were as much as four times more abundant on off-road sites. Species more prevalent along roadside routes included common species and those typical of farmland and other human-modified habitats, e.g., the European Starling (Sturnus vulgaris), the Black-billed Magpie (Pica hudsonia), and the House Sparrow (Passer domesticus). Differences in avian community composition between roadside and off-road surveys suggest that the use of BBS data when generating population estimates or distribution models may overestimate certain common species and underestimate others of conservation concern. Our results highlight the need to develop appropriate corrections for bias in estimates derived from roadside sampling, and the need to design surveys that sample bird communities across a more representative cross-section of the landscape, both near and far from roads.
Resumo:
The North American Breeding Bird Survey (BBS) is the principal source of data to inform researchers about the status of and trend for boreal forest birds. Unfortunately, little BBS coverage is available in the boreal forest, where increasing concern over the status of species breeding there has increased interest in northward expansion of the BBS. However, high disturbance rates in the boreal forest may complicate roadside monitoring. If the roadside sampling frame does not capture variation in disturbance rates because of either road placement or the use of roads for resource extraction, biased trend estimates might result. In this study, we examined roadside bias in the proportional representation of habitat disturbance via spatial data on forest “loss,” forest fires, and anthropogenic disturbance. In each of 455 BBS routes, the area disturbed within multiple buffers away from the road was calculated and compared against the area disturbed in degree blocks and BBS strata. We found a nonlinear relationship between bias and distance from the road, suggesting forest loss and forest fires were underrepresented below 75 and 100 m, respectively. In contrast, anthropogenic disturbance was overrepresented at distances below 500 m and underrepresented thereafter. After accounting for distance from road, BBS routes were reasonably representative of the degree blocks they were within, with only a few strata showing biased representation. In general, anthropogenic disturbance is overrepresented in southern strata, and forest fires are underrepresented in almost all strata. Similar biases exist when comparing the entire road network and the subset sampled by BBS routes against the amount of disturbance within BBS strata; however, the magnitude of biases differed. Based on our results, we recommend that spatial stratification and rotating panel designs be used to spread limited BBS and off-road sampling effort in an unbiased fashion and that new BBS routes be established where sufficient road coverage exists.