968 resultados para Manganese nodules.
Resumo:
The monograph gives the first systematic description of ore-bearing guyots from the West Pacific. It is mostly based on data obtained in numerous expeditions of Russian vessels during 1984-1992. Ore deposits located on upper parts of all slopes and tops of the guyots include phosphorites associated with cobalt- and platinum-rich ferromanganese crusts. Location, origin and prospecting of mineral deposits are discussed on the base of new data on metallogenic factors (geodynamics, tectonics, magmatism, sedimentation and morphostructures).
Resumo:
In 1970 a large deposit of ferromanganese nodules was discovered on the floor of the Indian Ocean southwest of Cape Leeuwin by the research vessel USNS Eltanin. This discovery, which was based largely on bottom photographs from about 20 stations, was discussed by Frakes (1975) and Kennett and Watkins (1975, 1976). The photographs suggest that the deposit spreads, nearly continuously, over 900 000km^2, and cores showed that the nodules are essentially confined to the sediment surface. Kennett and Watkins (op. cit.) pointed to the abundance of ripple and scour marks and current-formed lineations on the present surface, and of extensive disconformities in the cores, as evidence of strong present and past bottom currents in the region. They suggested that the current action had resulted in very low sedimentation rates, which had allowed the nodule field, named by them (1976) the 'Southeast Indian Ocean Manganese Pavement', to develop. In early 1976 the authors used the research vessel HMAS Diamantina for a 10-day cruise in the region to sample the nodules in order to study their chemistry and mineralogy. During the cruise 9 stations were occupied, 8 of them successfully (Figure 1), and about 2000 nodules were recovered from the sea bed. The apparatus used was a light box dredge on the ships hydrowire, which had a breaking strain of about one tonne. Although an attempt was made to reoccupy Eltanin photographic stations, it should be noted that positioning was by celestial navigation, so errors of up to 10 km are possible.
Resumo:
Contents of rare earth elements (REE) in standard samples of Fe-Mn nodules (SDO-5, 6), Fe-Mn crust (SDO-7), and red clay (SDO-9) have been determined by ICP-MS and instrumental neutron activation analysis. Reproducibility of ICP-MS was 5-6%. These results are discussed and compared with other data. It has been found that distribution of REE in the standard samples of ocean Fe-Mn ores and red clay is highly homogenous.
Resumo:
Results of study of bottom sediments near Iceland and on the Jan Mayen Island are reported. It was found that in recent sediments chemical elements are mainly associated with pyro- and volcanoclastics. In some areas adjusted to deep-seated faults ancient iron-manganese crusts and sediments occur. They are rich in Ni, Co, V, Cu, Mo, Cd and other elements associated with endogenic matter.
Resumo:
Concentrations and compositions of rare earth elements (REE) in three micronodule fractions (50-250, 250-500, and >500 ?m), coexisting macronodules, and host sediments were studied. Samples were collected at three sites (Guatemala Basin, Peru Basin, and northern equatorial Pacific) located in elevated bioproductivity zones of surface waters. Influence of micronodule size is dominant for REE compositions and subordinate for REE concentrations. For example, Ce concentration inversely correlates with micronodule size and drops to the lowest value in macronodules and host sediments. Decrease of Ce concentration is generally accompanied by Mn/Fe increase in micro- and macronodules. Hence, the role of diagenetic source of material directly correlates with micronodule sizes. Contribution of the diagenetic source is maximal for macronodules. REE composition distinctions for micronodules and macronodules can be attributed to variations of hydrogenic iron oxyhydroxides and diagenetic (hydrothermal) iron hydroxophosphates that are the major REE carriers in ferromanganese ore deposits. Relationship and general trend in chemistry of coexisting macronodules suggest that they can represent products of the initial stage of nodule formation.