605 resultados para Malária falciparum
Resumo:
Differences in parasite transmission intensity influence the process of acquisition of host immunity to Plasmodium falciparum malaria and ultimately, the rate of malaria related morbidity and mortality. Potential vaccines being designed to complement current intervention efforts therefore need to be evaluated against different malaria endemicity backgrounds. The associations between antibody responses to the chimeric merozoite surface protein 1 block 2 hybrid (MSP1 hybrid), glutamate-rich protein region 2 (GLURP R2) and the peptide AS202.11, and the risk of malaria were assessed in children living in malaria hyperendemic (Burkina Faso, n = 354) and hypo-endemic (Ghana, n = 209) areas. Using the same reagent lots and standardized protocols for both study sites, immunoglobulin (Ig) M, IgG and IgG sub-class levels to each antigen were measured by ELISA in plasma from the children (aged 6-72 months). Associations between antibody levels and risk of malaria were assessed using Cox regression models adjusting for covariates. There was a significant association between GLURP R2 IgG3 and reduced risk of malaria after adjusting age of children in both the Burkinabe (hazard ratio 0.82; 95 % CI 0.74-0.91, p < 0.0001) and the Ghanaian (HR 0.48; 95 % CI 0.25-0.91, p = 0.02) cohorts. MSP1 hybrid IgM was associated (HR 0.85; 95 % CI 0.73-0.98, p = 0.02) with reduced risk of malaria in Burkina Faso cohort while IgG against AS202.11 in the Ghanaian children was associated with increased risk of malaria (HR 1.29; 95 % CI 1.01-1.65, p = 0.04). These findings support further development of GLURP R2 and MSP1 block 2 hybrid, perhaps as a fusion vaccine antigen targeting malaria blood stage that can be deployed in areas of varying transmission intensity.
Resumo:
A completely effective vaccine for malaria (one of the major infectious diseases worldwide) is not yet available; different membrane proteins involved in parasite-host interactions have been proposed as candidates for designing it. It has been found that proteins encoded by the merozoite surface protein (msp)-7 multigene family are antibody targets in natural infection; the nucleotide diversity of three Pvmsp-7 genes was thus analyzed in a Colombian parasite population. By contrast with P. falciparum msp-7 loci and ancestral P. vivax msp-7 genes, specie-specific duplicates of the latter specie display high genetic variability, generated by single nucleotide polymorphisms, repeat regions, and recombination. At least three major allele types are present in Pvmsp-7C, Pvmsp-7H and Pvmsp-7I and positive selection seems to be operating on the central region of these msp-7 genes. Although this region has high genetic polymorphism, the C-terminus (Pfam domain ID: PF12948) is conserved and could be an important candidate when designing a subunit-based antimalarial vaccine.
Resumo:
Background: The tight junction (TJ) is one of the most important structures established during merozoite invasion of host cells and a large amount of proteins stored in Toxoplasma and Plasmodium parasites’ apical organelles are involved in forming the TJ. Plasmodium falciparum and Toxoplasma gondii apical membrane antigen 1 (AMA-1) and rhoptry neck proteins (RONs) are the two main TJ components. It has been shown that RON4 plays an essential role during merozoite and sporozoite invasion to target cells. This study has focused on characterizing a novel Plasmodium vivax rhoptry protein, RON4, which is homologous to PfRON4 and PkRON4. Methods: The ron4 gene was re-annotated in the P. vivax genome using various bioinformatics tools and taking PfRON4 and PkRON4 amino acid sequences as templates. Gene synteny, as well as identity and similarity values between open reading frames (ORFs) belonging to the three species were assessed. The gene transcription of pvron4, and the expression and localization of the encoded protein were also determined in the VCG-1 strain by molecular and immunological studies. Nucleotide and amino acid sequences obtained for pvron4 in VCG-1 were compared to those from strains coming from different geographical areas. Results: PvRON4 is a 733 amino acid long protein, which is encoded by three exons, having similar transcription and translation patterns to those reported for its homologue, PfRON4. Sequencing PvRON4 from the VCG-1 strain and comparing it to P. vivax strains from different geographical locations has shown two conserved regions separated by a low complexity variable region, possibly acting as a “smokescreen”. PvRON4 contains a predicted signal sequence, a coiled-coil α-helical motif, two tandem repeats and six conserved cysteines towards the carboxyterminus and is a soluble protein lacking predicted transmembranal domains or a GPI anchor. Indirect immunofluorescence assays have shown that PvRON4 is expressed at the apical end of schizonts and co-localizes at the rhoptry neck with PvRON2.
Resumo:
Background: Rhoptries are specialized organelles from parasites belonging to the phylum Apicomplexa; they secrete their protein content during invasion of host target cells and are sorted into discrete subcompartments within rhoptry neck or bulb. This distribution is associated with these proteins’ role in tight junction (TJ) and parasitophorous vacuole (PV) formation, respectively. Methods: Plasmodium falciparum RON2 amino acid sequence was used as bait for screening the codifying gene for the homologous protein in the Plasmodium vivax genome. Gene synteny, as well as identity and similarity values, were determined for ron2 and its flanking genes among P. falciparum, P. vivax and other malarial parasite genomes available at PlasmoDB and Sanger Institute databases. Pvron2 gene transcription was determined by RT-PCR of cDNA obtained from the P. vivax VCG-1 strain. Protein expression and localization were assessed by Western blot and immunofluorescence using polyclonal anti-PvRON2 antibodies. Co-localization was confirmed using antibodies directed towards specific microneme and rhoptry neck proteins. Results and discussion: The first P. vivax rhoptry neck protein (named here PvRON2) has been identified in this study. PvRON2 is a 2,204 residue-long protein encoded by a single 6,615 bp exon containing a hydrophobic signal sequence towards the amino-terminus, a transmembrane domain towards the carboxy-terminus and two coiled coil a-helical motifs; these are characteristic features of several previously described vaccine candidates against malaria. This protein also contains two tandem repeats within the interspecies variable sequence possibly involved in evading a host’s immune system. PvRON2 is expressed in late schizonts and localized in rhoptry necks similar to what has been reported for PfRON2, which suggests its participation during target cell invasion. Conclusions: The identification and partial characterization of the first P. vivax rhoptry neck protein are described in the present study. This protein is homologous to PfRON2 which has previously been shown to be associated with PfAMA-1, suggesting a similar role for PvRON2.
Resumo:
A completely effective vaccine for malaria (one of the major infectious diseases worldwide) is not yet available; different membrane proteins involved in parasite-host interactions have been proposed as candidates for designing it. It has been found that proteins encoded by the merozoite surface protein (msp)-7 multigene family are antibody targets in natural infection; the nucleotide diversity of three Pvmsp-7 genes was thus analyzed in a Colombian parasite population. By contrast with P. falciparum msp-7 loci and ancestral P. vivax msp-7 genes, specie-specific duplicates of the latter specie display high genetic variability, generated by single nucleotide polymorphisms, repeat regions, and recombination. At least three major allele types are present in Pvmsp-7C, Pvmsp-7H and Pvmsp-7I and positive selection seems to be operating on the central region of these msp-7 genes. Although this region has high genetic polymorphism, the C-terminus (Pfam domain ID: PF12948) is conserved and could be an important candidate when designing a subunit-based antimalarial vaccine.
Resumo:
Synthetic vaccines constitute the most promising tools for controlling and preventing infectious diseases. When synthetic immunogens are designed from the pathogen native sequences, these are normally poorly immunogenic and do not induce protection, as demonstrated in our research. After attempting many synthetic strategies for improving the immunogenicity properties of these sequences, the approach consisting of identifying high binding motifs present in those, and then performing specific changes on amino-acids belonging to such motifs, has proven to be a workable strategy. In addition, other strategies consisting of chemically introducing non-natural constraints to the backbone topology of the molecule and modifying the a-carbon asymmetry are becoming valuable tools to be considered in this pursuit. Non-natural structural constraints to the peptide backbone can be achieved by introducing peptide bond isosters such as reduced amides, partially retro or retro-inverso modifications or even including urea motifs. The second can be obtained by strategically replacing L-amino-acids with their enantiomeric forms for obtaining both structurally site-directed designed immunogens as potential vaccine candidates and their Ig structural molecular images, both having immunotherapeutic effects for preventing and controlling malaria.
Resumo:
Background: Plasmodium vivax malaria remains a major health problem in tropical and sub-tropical regions worldwide. Several rhoptry proteins which are important for interaction with and/or invasion of red blood cells, such as PfRONs, Pf92, Pf38, Pf12 and Pf34, have been described during the last few years and are being considered as potential anti-malarial vaccine candidates. This study describes the identification and characterization of the P. vivax rhoptry neck protein 1 (PvRON1) and examine its antigenicity in natural P. vivax infections. Methods: The PvRON1 encoding gene, which is homologous to that encoding the P. falciparum apical sushi protein (ASP) according to the plasmoDB database, was selected as our study target. The pvron1 gene transcription was evaluated by RT-PCR using RNA obtained from the P. vivax VCG-1 strain. Two peptides derived from the deduced P. vivax Sal-I PvRON1 sequence were synthesized and inoculated in rabbits for obtaining anti-PvRON1 antibodies which were used to confirm the protein expression in VCG-1 strain schizonts along with its association with detergent-resistant microdomains (DRMs) by Western blot, and its localization by immunofluorescence assays. The antigenicity of the PvRON1 protein was assessed using human sera from individuals previously exposed to P. vivax malaria by ELISA. Results: In the P. vivax VCG-1 strain, RON1 is a 764 amino acid-long protein. In silico analysis has revealed that PvRON1 shares essential characteristics with different antigens involved in invasion, such as the presence of a secretory signal, a GPI-anchor sequence and a putative sushi domain. The PvRON1 protein is expressed in parasite's schizont stage, localized in rhoptry necks and it is associated with DRMs. Recombinant protein recognition by human sera indicates that this antigen can trigger an immune response during a natural infection with P. vivax. Conclusions: This study shows the identification and characterization of the P. vivax rhoptry neck protein 1 in the VCG-1 strain. Taking into account that PvRON1 shares several important characteristics with other Plasmodium antigens that play a functional role during RBC invasion and, as shown here, it is antigenic, it could be considered as a good vaccine candidate. Further studies aimed at assessing its immunogenicity and protection-inducing ability in the Aotus monkey model are thus recommended.
Resumo:
T-cell receptor gene rearrangements were studied in Aotus monkeys developing high antibody titers and sterilizing immunity against the Plasmodium falciparum malaria parasite upon vaccination with the modified synthetic peptide 24112, which was identified in the Merozoite Surface Protein 2 (MSP-2) and is known to bind to HLA-DR beta 1*0403 molecules with high capacity. Spectratyping analysis showed a preferential usage of V beta 12 and V beta 6 TCR gene families in 67% of HLA-DR beta 1*0403-like genotyped monkeys. Docking of peptide 24112 into the HLA-DR beta 1*0401-HA peptide-HA1.7TCR complex containing the VDJ rearrangements identified in fully protected monkeys showed a different structural signature compared to nonprotected monkeys. These striking results show the exquisite specificity of the TCR/pMHCII complex formation needed for inducing sterilizing immunity and provide important hints for a logical and rational methodology to develop multiepitopic, minimal subunit-based synthetic vaccines against infectious diseases, among them malaria.
Resumo:
Plasmodium falciparum (Pf) malaria causes 200 million cases worldwide, 8 million being severe and complicated leading to similar to 1 million deaths and similar to 100,000 abortions annually. Plasmodium falciparum erythrocyte membrane protein 1 (PfEMP1) has been implicated in cytoadherence and infected erythrocyte rosette formation, associated with cerebral malaria; chondroitin sulphate-A attachment and infected erythrocyte sequestration related to pregnancy-associated malaria and other severe forms of disease. An endothelial cell high activity binding peptide is described in several of this similar to 300 kDa hypervariable protein's domains displaying a conserved motif (GACxPxRRxxLC); it established H-bonds with other binding peptides to mediate red blood cell group A and chondroitin sulphate attachment. This motif (when properly modified) induced PfEMP1-specific strain-transcending, fully-protective immunity for the first time in experimental challenge in Aotus monkeys, opening the way forward for a long sought-after vaccine against severe malaria.
Resumo:
Background: Multi-drug resistance and severe/ complicated cases are the emerging phenotypes of vivax malaria, which may deteriorate current anti-malarial control measures. The emergence of these phenotypes could be associated with either of the two Plasmodium vivax lineages. The two lineages had been categorized as Old World and New World, based on geographical sub-division and genetic and phenotypical markers. This study revisited the lineage hypothesis of P. vivax by typing the distribution of lineages among global isolates and evaluated their genetic relatedness using a panel of new mini-satellite markers. Methods: 18S SSU rRNA S-type gene was amplified from 420 Plasmodium vivax field isolates collected from different geographical regions of India, Thailand and Colombia as well as four strains each of P. vivax originating from Nicaragua, Panama, Thailand (Pak Chang), and Vietnam (ONG). A mini-satellite marker panel was then developed to understand the population genetic parameters and tested on a sample subset of both lineages. Results: 18S SSU rRNA S-type gene typing revealed the distribution of both lineages (Old World and New World) in all geographical regions. However, distribution of Plasmodium vivax lineages was highly variable in every geographical region. The lack of geographical sub-division between lineages suggests that both lineages are globally distributed. Ten mini-satellites were scanned from the P. vivax genome sequence; these tandem repeats were located in eight of the chromosomes. Mini-satellites revealed substantial allelic diversity (7-21, AE = 14.6 +/- 2.0) and heterozygosity (He = 0.697-0.924, AE = 0.857 +/- 0.033) per locus. Mini-satellite comparison between the two lineages revealed high but similar pattern of genetic diversity, allele frequency, and high degree of allele sharing. A Neighbour-Joining phylogenetic tree derived from genetic distance data obtained from ten mini-satellites also placed both lineages together in every cluster. Conclusions: The global lineage distribution, lack of genetic distance, similar pattern of genetic diversity, and allele sharing strongly suggested that both lineages are a single species and thus new emerging phenotypes associated with vivax malaria could not be clearly classified as belonging to a particular lineage on basis of their geographical origin.
Resumo:
Background: This study describes a bioinformatics approach designed to identify Plasmodium vivax proteins potentially involved in reticulocyte invasion. Specifically, different protein training sets were built and tuned based on different biological parameters, such as experimental evidence of secretion and/or involvement in invasion-related processes. A profile-based sequence method supported by hidden Markov models (HMMs) was then used to build classifiers to search for biologically-related proteins. The transcriptional profile of the P. vivax intra-erythrocyte developmental cycle was then screened using these classifiers. Results: A bioinformatics methodology for identifying potentially secreted P. vivax proteins was designed using sequence redundancy reduction and probabilistic profiles. This methodology led to identifying a set of 45 proteins that are potentially secreted during the P. vivax intra-erythrocyte development cycle and could be involved in cell invasion. Thirteen of the 45 proteins have already been described as vaccine candidates; there is experimental evidence of protein expression for 7 of the 32 remaining ones, while no previous studies of expression, function or immunology have been carried out for the additional 25. Conclusions: The results support the idea that probabilistic techniques like profile HMMs improve similarity searches. Also, different adjustments such as sequence redundancy reduction using Pisces or Cd-Hit allowed data clustering based on rational reproducible measurements. This kind of approach for selecting proteins with specific functions is highly important for supporting large-scale analyses that could aid in the identification of genes encoding potential new target antigens for vaccine development and drug design. The present study has led to targeting 32 proteins for further testing regarding their ability to induce protective immune responses against P. vivax malaria.
Resumo:
Se realizó un estudio genético – poblacional en dos grupos etarios de población colombiana con la finalidad de evaluar las diferencias genéticas relacionadas con el polimorfismo MTHFR 677CT en busca de eventos genéticos que soporten la persistencia de este polimorfismo en la especie humana debido que este ha sido asociado con múltiples enfermedades. De esta manera se genotipificaron los individuos, se analizaron los genotipos, frecuencias alélicas y se realizaron diferentes pruebas genéticas-poblacionales. Contrario a lo observado en poblaciones Colombianas revisadas se identificó la ausencia del Equilibrio Hardy-Weinberg en el grupo de los niños y estructuras poblacionales entre los adultos lo que sugiere diferentes historias demográficas y culturales entre estos dos grupos poblacionales al tiempo, lo que soporta la hipótesis de un evento de selección sobre el polimorfismo en nuestra población. De igual manera nuestros datos fueron analizados junto con estudios previos a nivel nacional y mundial lo cual sustenta que el posible evento selectivo es debido a que el aporte de ácido fólico se ha incrementado durante las últimas dos décadas como consecuencia de las campañas de fortificación de las harinas y suplementación a las embarazadas con ácido fólico, por lo tanto aquí se propone un modelo de selección que se ajusta a los datos encontrados en este trabajo se establece una relación entre los patrones nutricionales de la especie humana a través de la historia que explica las diferencias en frecuencias de este polimorfismo a nivel espacial y temporal.
Resumo:
Apesar da evolução positiva de alguns indicadores socioeconómicos, institucionais e políticos nos últimos 10 anos, a pobreza deve permanecer como um desafio central de qualquer estratégia de desenvolvimento a longo prazo e a sua erradicação, através da criação de emprego e do acesso à prevenção e tratamento das doenças da pobreza (sida, malária e tuberculose), deve continuar a ser a primeira prioridade para a África. A construção de uma sociedade solidária para com os mais pobres, desprotegidos e excluídos deve assim constituir uma prioridade da visão estratégica para a transformação da África subsariana. A transformação estrutural e sistémica, social e económica, deve ter o apoio e o contributo de todos os agentes, políticos e económicos, e deve ser deliberadamente mais favorável em relação a quem mais dela precisa. Impõe-se com urgência a aplicação de uma agenda de participação cívica activa e afirmativa para que todos os africanos, nos seus países e nas instituições regionais e/ou continentais, se sintam parte integrante de uma sociedade solidária, bem como de uma economia criativa e diversificada.
Resumo:
Resistant strains of Plasmodium falciparum and the unavailability of useful antimalarial vaccines reinforce the need to develop new efficacious antimalarials. This study details a pharmacophore model that has been used to identify a potent, soluble, orally bioavailable antimalarial bisquinoline, metaquine (N,N'-bis(7-chloroquinolin-4-yl)benzene-1,3-diamine) (dihydrochloride), which is active against Plasmodium berghei in vivo (oral ID50 of 25 mu mol/kg) and multidrug-resistant Plasmodium falciparum K1 in vitro (0.17 mu M). Metaquine shows strong affinity for the putative antimalarial receptor, heme at pH 7.4 in aqueous DMSO. Both crystallographic analyses and quantum mechanical calculations (HF/6-31+G*) reveal important regions of protonation and bonding thought to persist at parasitic vacuolar pH concordant with our receptor model. Formation of drug-heme adduct in solution was confirmed using high-resolution positive ion electrospray mass spectrometry. Metaquine showed strong binding with the receptor in a 1: 1 ratio (log K = 5.7 +/- 0.1) that was predicted by molecular mechanics calculations. This study illustrates a rational multidisciplinary approach for the development of new 4-aminoquinoline antimalarials, with efficacy superior to chloroquine, based on the use of a pharmacophore model.
Resumo:
Plasmepsin 4 (PM4) is a digestive vacuole enzyme found in all Plasmodium species examined to date. While P. falciparum has three additional aspartic proteinases in its digestive vacuole in addition to plasmepsin 4, other Plasmodium species have only PM4 in their digestive vacuole. Therefore, PM4 may be a good target for the development of an antimalarial drug. This study presents data obtained with PM4s from several Plasmodium species. Low nanomolar K-i values have been observed for all PM4s studied.