452 resultados para MULTIPHASE INTERMETALLICS


Relevância:

10.00% 10.00%

Publicador:

Resumo:

RATIONALE AND OBJECTIVES: The aim of this study was to measure the radiation dose of dual-energy and single-energy multidetector computed tomographic (CT) imaging using adult liver, renal, and aortic imaging protocols. MATERIALS AND METHODS: Dual-energy CT (DECT) imaging was performed on a conventional 64-detector CT scanner using a software upgrade (Volume Dual Energy) at tube voltages of 140 and 80 kVp (with tube currents of 385 and 675 mA, respectively), with a 0.8-second gantry revolution time in axial mode. Parameters for single-energy CT (SECT) imaging were a tube voltage of 140 kVp, a tube current of 385 mA, a 0.5-second gantry revolution time, helical mode, and pitch of 1.375:1. The volume CT dose index (CTDI(vol)) value displayed on the console for each scan was recorded. Organ doses were measured using metal oxide semiconductor field-effect transistor technology. Effective dose was calculated as the sum of 20 organ doses multiplied by a weighting factor found in International Commission on Radiological Protection Publication 60. Radiation dose saving with virtual noncontrast imaging reconstruction was also determined. RESULTS: The CTDI(vol) values were 49.4 mGy for DECT imaging and 16.2 mGy for SECT imaging. Effective dose ranged from 22.5 to 36.4 mSv for DECT imaging and from 9.4 to 13.8 mSv for SECT imaging. Virtual noncontrast imaging reconstruction reduced the total effective dose of multiphase DECT imaging by 19% to 28%. CONCLUSION: Using the current Volume Dual Energy software, radiation doses with DECT imaging were higher than those with SECT imaging. Substantial radiation dose savings are possible with DECT imaging if virtual noncontrast imaging reconstruction replaces precontrast imaging.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Pelagic sediments recording an extreme and short-lived global warming event, the Late Paleocene Thermal Maximum (LPTM), were recovered from Hole 999B (Colombian Basin) and Holes 1001A and 1001B (lower Nicaraguan Rise) in the Caribbean Sea during Ocean Drilling Program Leg 165. The LPTM consists of a 0.3-0.97 m calcareous claystone to claystone horizon. High-resolution downhole logging (Formation MicroScanner [FMS]), standard downhole logs (resistivity, velocity, density, natural gamma ray, and geochemical log), and non-destructive chemical and physical property (multisensor core logger [MSCL] and X-ray fluorescence [XRF] core scanner) data were used to identify composite sections from parallel holes and to record sedimentological and environmental changes associated with the LPTM. Downhole logging data indicate an abrupt and distinct difference in physical and chemical properties that extend for tens of meters above and below the LPTM. These observations indicate a rapid environmental change at the LPTM, which persists beyond the LPTM anomaly. Comparisons of gamma-ray attenuation porosity evaluator (GRAPE) densities from MSCL logging on split cores with FMS resistivity values allows core-to-log correlation with a high degree of accuracy. High-resolution magnetic susceptibility measurements of the cores are compared with elemental concentrations (e.g., Fe, Ca) analyzed by high-resolution XRF scanning. The high-resolution data obtained from several detailed core and downhole logging methods are the key to the construction of composite sections, the correlation of both adjacent holes and distant sites, and core-log integration. These continuous-depth series reveal the LPTM as a multiphase event with a nearly instantaneous onset, followed by a much different set of physical and chemical conditions of short duration, succeeded by a longer transition to a new, more permanent set of environmental circumstances. The estimated duration of these 'phases' are consistent with paleontological and isotopic studies of the LPTM

Relevância:

10.00% 10.00%

Publicador:

Resumo:

A high-resolution diatom census coupled with other proxy data from Laurentian Fan (LF) provides a detailed description of the last deglaciation, bringing new insight to that period by revealing directly the timing of sea-ice formation and melting. Cold events Heinrich Event 1 (H1) and the Younger Dryas (YD) were multiphase events. H1 (~16.8-15.7 cal kyr BP) was defined by a two-pulse release of icebergs promoting sea-ice formation. Melting of sea-ice after H1 corresponds to a cold and fresh anomaly that may have kept the Bølling colder than the Allerød. At ~13.6 cal kyr BP, a cooling trend culminated with sea-ice formation, marking the YD onset (~12.8 cal kyr BP). The decrease in sea-ice (~12.2 cal kyr BP) led to a YD second phase characterized by very cold winters. However, the contribution of warm water diatoms tends to increase at the same time and the YD gradual end (~11.6 cal kyr BP) contrasts with its abrupt end in Greenland ice cores. The YD cannot be regarded as an event triggered by a fresh water input through the Laurentian Channel since only one weak brief input nearly 1000 yrs after its onset is recorded. Very cold and cool conditions without ice mark the following Preboreal. A northward heat flux between 10.8 and 10.2 cal kyr BP was interrupted by the increased influence of coastal waters likely fed by inland melting. There was no further development of sea-ice or ice-drift then.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Aluminium is added to decrease matrix chromium losses on 430 stainless steel sintered on nitrogen atmosphere. Three different ways were used to add a 3% (in weight) aluminium: as elemental powder, as prealloyed powder, and as intermetallic Fe-AI compound. After die pressing at densities between 6.1-6.5 g/cm3, samples were sintered on vacuum and on N2-5%H2 atmosphere in a dilatometric furnace. Therefore, dimensional change was recorded during sintering. Weight gain was obtained after nitrogen sintering on all materials due to nitrides formation. Sample expansion was obtained on all nitrogen sintered steels with Al additions. Microstructure showed a dispersion of aluminium nitrides when pre-alloyed powders are used. On the contrary, aluminium nitride areas can be found when aluminium is added as elemental powders or as Fe-AI intermetallics. Also nitrogen atmosphere leads to austenite formation and hence, on cooling, dilatometric results showed a dimensional change at austenitic-ferritic phase transformation temperature.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The reliability of Pb-free solder joints is controlled by their microstructural constituents. Therefore, knowledge of the solder microconstituents’ mechanical properties as a function of temperature is required. Sn-Ag-Cu lead-free solder alloy contains three phases: a Sn-rich phase, and the intermetallic compounds (IMCs) Cu6Sn5 and Ag3Sn. Typically, the Sn-rich phase is surrounded by a eutectic mixture of β-Sn, Cu6Sn5, and Ag3Sn. In this paper, we report on the Young’s modulus and hardness of the Cu6Sn5 and Cu3Sn IMCs, the β-Sn phase, and the eutectic compound, as measured by nanoindentation at elevated temperatures. For both the β-Sn phase and the eutectic compound, the hardness and Young’s modulus exhibited strong temperature dependence. In the case of the intermetallics, this temperature dependence is observed for Cu6Sn5, but the mechanical properties of Cu3Sn are more stable up to 200°C.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

La presente Tesis Doctoral tiene como objetivo el estudio de flujo turbulento cargado con partículas sólidas a través de canales y tuberías de sección constante usando un enfoque Euleriano-Lagrangiano. El campo de flujo de la fase de transporte (aire) se resuelve usando simulación de grandes escalas (LES), implementada en un programa de volúmenes finitos mientras que las ecuaciones gobernantes de la fase dispersa son resueltas por medio de un algoritmo de seguimiento Lagrangiano de partículas que ha sido desarrollado y acoplado al programa que resuelve el flujo. Se estudia de manera sistemática y progresiva la interacción fluido→partícula (one-way coupling), a través de diferentes configuraciones geométricas en coordenadas cartesianas (canales de sección constante y variable) y en coordenadas cilíndricas (tuberías de sección constante y sección variable) abarcando diferentes números de Reynolds y diferentes tamaños de partículas; todos los resultados obtenidos han sido comparados con datos publicados previamente. El estudio de flujo multifásico a través de, tuberías de sección variable, ha sido abordada en otras investigaciones mayoritariamente de forma experimental o mediante simulación usando modelos de turbulencia menos complejos y no mediante LES. El patrón de flujo que se verifica en una tubería con expansión es muy complejo y dicha configuración geométrica se halla en múltiples aplicaciones industriales que involucran el transporte de partículas sólidas, por ello es de gran interés su estudio. Como hecho innovador, en esta tesis no solo se resuelven las estadísticas de velocidad del fluido y las partículas en tuberías con diferentes tamaños de expansión y diferentes regímenes de flujo sino que se caracteriza, usando diversas formulaciones del número de Stokes y el parámetro de arrastre, el ingreso y acumulación de partículas dentro de la zona de recirculación, obteniéndose resultados coincidentes con datos experimentales. ABSTRACT The objective of this Thesis research is to study the turbulent flow laden with solid particles through channels and pipes with using Eulerian-Lagrangian approach. The flow field of the transport phase (air ) is solved using large eddy simulation ( LES ) implemented in a program of finite volume while the governing equations of the dispersed phase are resolved by means of a particle Lagrangian tracking algorithm which was developed and coupled to principal program flow solver . We studied systematically and progressively the fluid interaction → particle ( one- way coupling ) , through different geometric configurations in Cartesian coordinates ( channel with constant and variable section) and in cylindrical coordinates ( pipes with constant section and variable section ) covering different Reynolds numbers and different particle sizes, all results have been compared with previously published data . The study of multiphase flow through, pipes with variable section has been addressed in other investigations predominantly experimentally or by simulation using less complex models and no turbulence by LES. The flow pattern is verified in a pipe expansion is very complex and this geometry is found in many industrial applications involving the transport of solid particles, so it is of great interest to study. As an innovator fact , in this Thesis not only finds fluid velocity statistics and particles with different sizes of pipe expansion and different flow regimes but characterized, using various formulations of the Stokes number and the drag parameter are resolved, the entry and accumulation of particles within the recirculation zone , matching results obtained with experimental data.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

In high performance digital systems as well as in RF systems, voltage scaling and modulation techniques have been adopted to achieve a more efficient processing of the energy. The implementation of such techniques relies on a power supply that is capable of rapidly adjusting the system supply voltage. In this paper, a pulsewidth modulation multiphase topology with magnetic coupling is proposed for its use in voltage modulation techniques. Since the magnetic coupling in this topology is done with transformers instead of coupled inductors, the energy storage is reduced and very fast voltage changes are achieved. Advantages and drawbacks of this topology have been previously presented in the literature and in this paper, the design criteria for implementing a power supply for the envelope elimination and restoration technique in an RF system are presented along with an implementation of the power supply.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

This paper presents a primary-parallel secondary-series multicore forward micro-inverter for photovoltaic AC-module application. The proposed solution changes the number of active phases depending on the grid voltage, thus enabling the usage of low-profile unitary turns ratio transformers. Therefore, the transformers are well coupled and the overall performance of the inverter is improved. Due to the multiphase solution the number of devices increases but, the current stress and losses per device are reduced contributing to an easier thermal management. Furthermore, the decoupling capacitor is split between the phases, contributing to a low-profile solution without electrolytic capacitors suitable to be mounted in the frame of a PV module.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

El requerimiento de proveer alta frecuencia de datos en los modernos sistema de comunicación inalámbricos resulta en complejas señales moduladas de radio-frequencia (RF) con un gran ancho de banda y alto ratio pico-promedio (PAPR). Para garantizar la linealidad del comportamiento, los amplificadores lineales de potencia comunes funcionan típicamente entre 4 y 10 dB de back-o_ desde la máxima potencia de salida, ocasionando una baja eficiencia del sistema. La eliminación y restauración de la evolvente (EER) y el seguimiento de la evolvente (ET) son dos prometedoras técnicas para resolver el problema de la eficiencia. Tanto en EER como en ET, es complicado diseñar un amplificador de potencia que sea eficiente para señales de RF de alto ancho de banda y alto PAPR. Una propuesta común para los amplificadores de potencia es incluir un convertidor de potencia de muy alta eficiencia operando a frecuencias más altas que el ancho de banda de la señal RF. En este caso, la potencia perdida del convertidor ocasionado por la alta frecuencia desaconseja su práctica cuando el ancho de banda es muy alto. La solución a este problema es el enfoque de esta disertación que presenta dos arquitecturas de amplificador evolvente: convertidor híbrido-serie con una técnica de evolvente lenta y un convertidor multinivel basado en un convertidor reductor multifase con control de tiempo mínimo. En la primera arquitectura, una topología híbrida está compuesta de una convertidor reductor conmutado y un regulador lineal en serie que trabajan juntos para ajustar la tensión de salida para seguir a la evolvente con precisión. Un algoritmo de generación de una evolvente lenta crea una forma de onda con una pendiente limitada que es menor que la pendiente máxima de la evolvente original. La salida del convertidor reductor sigue esa forma de onda en vez de la evolvente original usando una menor frecuencia de conmutación, porque la forma de onda no sólo tiene una pendiente reducida sino también un menor ancho de banda. De esta forma, el regulador lineal se usa para filtrar la forma de onda tiene una pérdida de potencia adicional. Dependiendo de cuánto se puede reducir la pendiente de la evolvente para producir la forma de onda, existe un trade-off entre la pérdida de potencia del convertidor reductor relacionada con la frecuencia de conmutación y el regulador lineal. El punto óptimo referido a la menor pérdida de potencia total del amplificador de evolvente es capaz de identificarse con la ayuda de modelo preciso de pérdidas que es una combinación de modelos comportamentales y analíticos de pérdidas. Además, se analiza el efecto en la respuesta del filtro de salida del convertidor reductor. Un filtro de dampeo paralelo extra es necesario para eliminar la oscilación resonante del filtro de salida porque el convertidor reductor opera en lazo abierto. La segunda arquitectura es un amplificador de evolvente de seguimiento de tensión multinivel. Al contrario que los convertidores que usan multi-fuentes, un convertidor reductor multifase se emplea para generar la tensión multinivel. En régimen permanente, el convertidor reductor opera en puntos del ciclo de trabajo con cancelación completa del rizado. El número de niveles de tensión es igual al número de fases de acuerdo a las características del entrelazamiento del convertidor reductor. En la transición, un control de tiempo mínimo (MTC) para convertidores multifase es novedosamente propuesto y desarrollado para cambiar la tensión de salida del convertidor reductor entre diferentes niveles. A diferencia de controles convencionales de tiempo mínimo para convertidores multifase con inductancia equivalente, el propuesto MTC considera el rizado de corriente por cada fase basado en un desfase fijo que resulta en diferentes esquemas de control entre las fases. La ventaja de este control es que todas las corrientes vuelven a su fase en régimen permanente después de la transición para que la siguiente transición pueda empezar muy pronto, lo que es muy favorable para la aplicación de seguimiento de tensión multinivel. Además, el control es independiente de la carga y no es afectado por corrientes de fase desbalanceadas. Al igual que en la primera arquitectura, hay una etapa lineal con la misma función, conectada en serie con el convertidor reductor multifase. Dado que tanto el régimen permanente como el estado de transición del convertidor no están fuertemente relacionados con la frecuencia de conmutación, la frecuencia de conmutación puede ser reducida para el alto ancho de banda de la evolvente, la cual es la principal consideración de esta arquitectura. La optimización de la segunda arquitectura para más alto anchos de banda de la evolvente es presentada incluyendo el diseño del filtro de salida, la frecuencia de conmutación y el número de fases. El área de diseño del filtro está restringido por la transición rápida y el mínimo pulso del hardware. La rápida transición necesita un filtro pequeño pero la limitación del pulso mínimo del hardware lleva el diseño en el sentido contrario. La frecuencia de conmutación del convertidor afecta principalmente a la limitación del mínimo pulso y a las pérdidas de potencia. Con una menor frecuencia de conmutación, el ancho de pulso en la transición es más pequeño. El número de fases relativo a la aplicación específica puede ser optimizado en términos de la eficiencia global. Otro aspecto de la optimización es mejorar la estrategia de control. La transición permite seguir algunas partes de la evolvente que son más rápidas de lo que el hardware puede soportar al precio de complejidad. El nuevo método de sincronización de la transición incrementa la frecuencia de la transición, permitiendo que la tensión multinivel esté más cerca de la evolvente. Ambas estrategias permiten que el convertidor pueda seguir una evolvente con un ancho de banda más alto que la limitación de la etapa de potencia. El modelo de pérdidas del amplificador de evolvente se ha detallado y validado mediante medidas. El mecanismo de pérdidas de potencia del convertidor reductor tiene que incluir las transiciones en tiempo real, lo cual es diferente del clásico modelos de pérdidas de un convertidor reductor síncrono. Este modelo estima la eficiencia del sistema y juega un papel muy importante en el proceso de optimización. Finalmente, la segunda arquitectura del amplificador de evolvente se integra con el amplificador de clase F. La medida del sistema EER prueba el ahorro de energía con el amplificador de evolvente propuesto sin perjudicar la linealidad del sistema. ABSTRACT The requirement of delivering high data rates in modern wireless communication systems results in complex modulated RF signals with wide bandwidth and high peak-to-average ratio (PAPR). In order to guarantee the linearity performance, the conventional linear power amplifiers typically work at 4 to 10 dB back-off from the maximum output power, leading to low system efficiency. The envelope elimination and restoration (EER) and envelope tracking (ET) are two promising techniques to overcome the efficiency problem. In both EER and ET, it is challenging to design efficient envelope amplifier for wide bandwidth and high PAPR RF signals. An usual approach for envelope amplifier includes a high-efficiency switching power converter operating at a frequency higher than the RF signal's bandwidth. In this case, the power loss of converter caused by high switching operation becomes unbearable for system efficiency when signal bandwidth is very wide. The solution of this problem is the focus of this dissertation that presents two architectures of envelope amplifier: a hybrid series converter with slow-envelope technique and a multilevel converter based on a multiphase buck converter with the minimum time control. In the first architecture, a hybrid topology is composed of a switched buck converter and a linear regulator in series that work together to adjust the output voltage to track the envelope with accuracy. A slow envelope generation algorithm yields a waveform with limited slew rate that is lower than the maximum slew rate of the original envelope. The buck converter's output follows this waveform instead of the original envelope using lower switching frequency, because the waveform has not only reduced slew rate but also reduced bandwidth. In this way, the linear regulator used to filter the waveform has additional power loss. Depending on how much reduction of the slew rate of envelope in order to obtain that waveform, there is a trade-off between the power loss of buck converter related to the switching frequency and the power loss of linear regulator. The optimal point referring to the lowest total power loss of this envelope amplifier is identified with the help of a precise power loss model that is a combination of behavioral and analytic loss model. In addition, the output filter's effect on the response is analyzed. An extra parallel damping filter is needed to eliminate the resonant oscillation of output filter L and C, because the buck converter operates in open loop. The second architecture is a multilevel voltage tracking envelope amplifier. Unlike the converters using multi-sources, a multiphase buck converter is employed to generate the multilevel voltage. In the steady state, the buck converter operates at complete ripple cancellation points of duty cycle. The number of the voltage levels is equal to the number of phases according the characteristics of interleaved buck converter. In the transition, a minimum time control (MTC) for multiphase converter is originally proposed and developed for changing the output voltage of buck converter between different levels. As opposed to conventional minimum time control for multiphase converter with equivalent inductance, the proposed MTC considers the current ripple of each phase based on the fixed phase shift resulting in different control schemes among the phases. The advantage of this control is that all the phase current return to the steady state after the transition so that the next transition can be triggered very soon, which is very favorable for the application of multilevel voltage tracking. Besides, the control is independent on the load condition and not affected by the unbalance of phase current. Like the first architecture, there is also a linear stage with the same function, connected in series with the multiphase buck converter. Since both steady state and transition state of the converter are not strongly related to the switching frequency, it can be reduced for wide bandwidth envelope which is the main consideration of this architecture. The optimization of the second architecture for wider bandwidth envelope is presented including the output filter design, switching frequency and the number of phases. The filter design area is restrained by fast transition and the minimum pulse of hardware. The fast transition needs small filter but the minimum pulse of hardware limitation pushes the filter in opposite way. The converter switching frequency mainly affects the minimum pulse limitation and the power loss. With lower switching frequency, the pulse width in the transition is smaller. The number of phases related to specific application can be optimized in terms of overall efficiency. Another aspect of optimization is improving control strategy. Transition shift allows tracking some parts of envelope that are faster than the hardware can support at the price of complexity. The new transition synchronization method increases the frequency of transition, allowing the multilevel voltage to be closer to the envelope. Both control strategies push the converter to track wider bandwidth envelope than the limitation of power stage. The power loss model of envelope amplifier is detailed and validated by measurements. The power loss mechanism of buck converter has to include the transitions in real time operation, which is different from classical power loss model of synchronous buck converter. This model estimates the system efficiency and play a very important role in optimization process. Finally, the second envelope amplifier architecture is integrated with a Class F amplifier. EER system measurement proves the power saving with the proposed envelope amplifier without disrupting the linearity performance.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The use of techniques such as envelope tracking (ET) and envelope elimination and restoration (EER) can improve the efficiency of radio frequency power amplifiers (RFPA). In both cases, high-bandwidth DC/DC converters called envelope amplifiers (EA) are used to modulate the supply voltage of the RFPA. This paper addresses the analysis and design of a modified two-phase Buck converter optimized to operate as EA. The effects of multiphase operation on the tracking capabilities are analyzed. The use of a fourth-order output filter is proposed to increase the attenuation of the harmonics generated by the PWM operation, thus allowing a reduction of the ratio between the switching frequency and the converter bandwidth. The design of the output filter is addressed considering envelope tracking accuracy and distortion caused by the side bands arising from the nonlinear modulation process. Finally, the proposed analysis and design methods are supported by simulation results, as well as demonstrated by experiments obtained using two 100-W, 10-MHz, two-phase Buck EAs capable of accurately tracking a 1.5-MHz bandwidth OFDM signal.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

En hidrodinámica, el fenómeno de Sloshing se puede definir como el movimiento de la superficie libre de un fluido dentro de un contenedor sometido a fuerzas y perturbaciones externas. El fluido en cuestión experimenta violentos movimientos con importantes deformaciones de su superficie libre. La dinámica del fluido puede llegar a generar cargas hidrodinámicas considerables las cuales pueden afectar la integridad estructural y/o comprometer la estabilidad del vehículo que transporta dicho contenedor. El fenómeno de Sloshing ha sido extensivamente investigado matemática, numérica y experimentalmente, siendo el enfoque experimental el más usado debido a la complejidad del problema, para el cual los modelos matemáticos y de simulación son aun incapaces de predecir con suficiente rapidez y precisión las cargas debidas a dicho fenómeno. El flujo generado por el Sloshing usualmente se caracteriza por la presencia de un fluido multifase (gas-liquido) y turbulencia. Reducir al máximo posible la complejidad del fenómeno de Sloshing sin perder la esencia del problema es el principal reto de esta tesis doctoral, donde un trabajo experimental enfocado en casos canónicos de Sloshing es presentado y documentado con el objetivo de aumentar la comprensión de dicho fenómeno y por tanto intentar proveer información valiosa para validaciones de códigos numéricos. El fenómeno de Sloshing juega un papel importante en la industria del transporte marítimo de gas licuado (LNG). El mercado de LNG en los últimos años ha reportado un crecimiento hasta tres veces mayor al de los mercados de petróleo y gas convencionales. Ingenieros en laboratorios de investigación e ingenieros adscritos a la industria del LNG trabajan continuamente buscando soluciones económicas y seguras para contener, transferir y transportar grandes volúmenes de LNG. Los buques transportadores de LNG (LNGC) han pasado de ser unos pocos buques con capacidad de 75000 m3 hace unos treinta años, a una amplia flota con una capacidad de 140000 m3 actualmente. En creciente número, hoy día se construyen buques con capacidades que oscilan entre 175000 m3 y 250000 m3. Recientemente un nuevo concepto de buque LNG ha salido al mercado y se le conoce como FLNG. Un FLNG es un buque de gran valor añadido que solventa los problemas de extracción, licuefacción y almacenamiento del LNG, ya que cuenta con equipos de extracción y licuefacción a bordo, eliminando por tanto las tareas de transvase de las estaciones de licuefacción en tierra hacia los buques LNGC. EL LNG por tanto puede ser transferido directamente desde el FLNG hacia los buques LNGC en mar abierto. Niveles de llenado intermedios en combinación con oleaje durante las operaciones de trasvase inducen movimientos en los buques que generan por tanto el fenómeno de Sloshing dentro de los tanques de los FLNG y los LNGC. El trabajo de esta tesis doctoral lidia con algunos de los problemas del Sloshing desde un punto de vista experimental y estadístico, para ello una serie de tareas, descritas a continuación, se han llevado a cabo : 1. Un dispositivo experimental de Sloshing ha sido configurado. Dicho dispositivo ha permitido ensayar secciones rectangulares de tanques LNGC a escala con movimientos angulares de un grado de libertad. El dispositivo experimental ha sido instrumentado para realizar mediciones de movimiento, presiones, vibraciones y temperatura, así como la grabación de imágenes y videos. 2. Los impactos de olas generadas dentro de una sección rectangular de un LNGC sujeto a movimientos regulares forzados han sido estudiados mediante la caracterización del fenómeno desde un punto de vista estadístico enfocado en la repetitividad y la ergodicidad del problema. 3. El estudio de los impactos provocados por movimientos regulares ha sido extendido a un escenario más realístico mediante el uso de movimientos irregulares forzados. 4. El acoplamiento del Sloshing generado por el fluido en movimiento dentro del tanque LNGC y la disipación de la energía mecánica de un sistema no forzado de un grado de libertad (movimiento angular) sujeto a una excitación externa ha sido investigado. 5. En la última sección de esta tesis doctoral, la interacción entre el Sloshing generado dentro en una sección rectangular de un tanque LNGC sujeto a una excitación regular y un cuerpo elástico solidario al tanque ha sido estudiado. Dicho estudio corresponde a un problema de interacción fluido-estructura. Abstract In hydrodynamics, we refer to sloshing as the motion of liquids in containers subjected to external forces with large free-surface deformations. The liquid motion dynamics can generate loads which may affect the structural integrity of the container and the stability of the vehicle that carries such container. The prediction of these dynamic loads is a major challenge for engineers around the world working on the design of both the container and the vehicle. The sloshing phenomenon has been extensively investigated mathematically, numerically and experimentally. The latter has been the most fruitful so far, due to the complexity of the problem, for which the numerical and mathematical models are still incapable of accurately predicting the sloshing loads. The sloshing flows are usually characterised by the presence of multiphase interaction and turbulence. Reducing as much as possible the complexity of the sloshing problem without losing its essence is the main challenge of this phd thesis, where experimental work on selected canonical cases are presented and documented in order to better understand the phenomenon and to serve, in some cases, as an useful information for numerical validations. Liquid sloshing plays a key roll in the liquified natural gas (LNG) maritime transportation. The LNG market growth is more than three times the rated growth of the oil and traditional gas markets. Engineers working in research laboratories and companies are continuously looking for efficient and safe ways for containing, transferring and transporting the liquified gas. LNG carrying vessels (LNGC) have evolved from a few 75000 m3 vessels thirty years ago to a huge fleet of ships with a capacity of 140000 m3 nowadays and increasing number of 175000 m3 and 250000 m3 units. The concept of FLNG (Floating Liquified Natural Gas) has appeared recently. A FLNG unit is a high value-added vessel which can solve the problems of production, treatment, liquefaction and storage of the LNG because the vessel is equipped with a extraction and liquefaction facility. The LNG is transferred from the FLNG to the LNGC in open sea. The combination of partial fillings and wave induced motions may generate sloshing flows inside both the LNGC and the FLNG tanks. This work has dealt with sloshing problems from a experimental and statistical point of view. A series of tasks have been carried out: 1. A sloshing rig has been set up. It allows for testing tanks with one degree of freedom angular motion. The rig has been instrumented to measure motions, pressure and conduct video and image recording. 2. Regular motion impacts inside a rectangular section LNGC tank model have been studied, with forced motion tests, in order to characterise the phenomenon from a statistical point of view by assessing the repeatability and practical ergodicity of the problem. 3. The regular motion analysis has been extended to an irregular motion framework in order to reproduce more realistic scenarios. 4. The coupled motion of a single degree of freedom angular motion system excited by an external moment and affected by the fluid moment and the mechanical energy dissipation induced by sloshing inside the tank has been investigated. 5. The last task of the thesis has been to conduct an experimental investigation focused on the strong interaction between a sloshing flow in a rectangular section of a LNGC tank subjected to regular excitation and an elastic body clamped to the tank. It is thus a fluid structure interaction problem.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

El desarrollo da las nuevas tecnologías permite a los ingenieros llevar al límite el funcionamiento de los circuitos integrados (Integrated Circuits, IC). Las nuevas generaciones de procesadores, DSPs o FPGAs son capaces de procesar la información a una alta velocidad, con un alto consumo de energía, o esperar en modo de baja potencia con el mínimo consumo posible. Esta gran variación en el consumo de potencia y el corto tiempo necesario para cambiar de un nivel al otro, afecta a las especificaciones del Módulo de Regulador de Tensión (Voltage Regulated Module, VRM) que alimenta al IC. Además, las características adicionales obligatorias, tales como adaptación del nivel de tensión (Adaptive Voltage Positioning, AVP) y escalado dinámico de la tensión (Dynamic Voltage Scaling, DVS), imponen requisitos opuestas en el diseño de la etapa de potencia del VRM. Para poder soportar las altas variaciones de los escalones de carga, el condensador de filtro de salida del VRM se ha de sobredimensionar, penalizando la densidad de energía y el rendimiento durante la operación de DVS. Por tanto, las actuales tendencias de investigación se centran en mejorar la respuesta dinámica del VRM, mientras se reduce el tamaño del condensador de salida. La reducción del condensador de salida lleva a menor coste y una prolongación de la vida del sistema ya que se podría evitar el uso de condensadores voluminosos, normalmente implementados con condensadores OSCON. Una ventaja adicional es que reduciendo el condensador de salida, el DVS se puede realizar más rápido y con menor estrés de la etapa de potencia, ya que la cantidad de carga necesaria para cambiar la tensión de salida es menor. El comportamiento dinámico del sistema con un control lineal (Control Modo Tensión, VMC, o Control Corriente de Pico, Peak Current Mode Control, PCMC,…) está limitado por la frecuencia de conmutación del convertidor y por el tamaño del filtro de salida. La reducción del condensador de salida se puede lograr incrementando la frecuencia de conmutación, así como incrementando el ancho de banda del sistema, y/o aplicando controles avanzados no-lineales. Usando esos controles, las variables del estado se saturan para conseguir el nuevo régimen permanente en un tiempo mínimo, así como el filtro de salida, más específicamente la pendiente de la corriente de la bobina, define la respuesta de la tensión de salida. Por tanto, reduciendo la inductancia de la bobina de salida, la corriente de bobina llega más rápido al nuevo régimen permanente, por lo que una menor cantidad de carga es tomada del condensador de salida durante el tránsito. El inconveniente de esa propuesta es que el rendimiento del sistema es penalizado debido al incremento de pérdidas de conmutación y las corrientes RMS. Para conseguir tanto la reducción del condensador de salida como el alto rendimiento del sistema, mientras se satisfacen las estrictas especificaciones dinámicas, un convertidor multifase es adoptado como estándar para aplicaciones VRM. Para asegurar el reparto de las corrientes entre fases, el convertidor multifase se suele implementar con control de modo de corriente. Para superar la limitación impuesta por el filtro de salida, la segunda posibilidad para reducir el condensador de salida es aplicar alguna modificación topológica (Topologic modifications) de la etapa básica de potencia para incrementar la pendiente de la corriente de bobina y así reducir la duración de tránsito. Como el transitorio se ha reducido, una menor cantidad de carga es tomada del condensador de salida bajo el mismo escalón de la corriente de salida, con lo cual, el condensador de salida se puede reducir para lograr la misma desviación de la tensión de salida. La tercera posibilidad para reducir el condensador de salida del convertidor es introducir un camino auxiliar de energía (additional energy path, AEP) para compensar el desequilibrio de la carga del condensador de salida reduciendo consecuentemente la duración del transitorio y la desviación de la tensión de salida. De esta manera, durante el régimen permanente, el sistema tiene un alto rendimiento debido a que el convertidor principal con bajo ancho de banda es diseñado para trabajar con una frecuencia de conmutación moderada para conseguir requisitos estáticos. Por otro lado, el comportamiento dinámico durante los transitorios es determinado por el AEP con un alto ancho de banda. El AEP puede ser implementado como un camino resistivo, como regulador lineal (Linear regulator, LR) o como un convertidor conmutado. Las dos primeras implementaciones proveen un mayor ancho de banda, acosta del incremento de pérdidas durante el transitorio. Por otro lado, la implementación del convertidor computado presenta menor ancho de banda, limitado por la frecuencia de conmutación, aunque produce menores pérdidas comparado con las dos anteriores implementaciones. Dependiendo de la aplicación, la implementación y la estrategia de control del sistema, hay una variedad de soluciones propuestas en el Estado del Arte (State-of-the-Art, SoA), teniendo diferentes propiedades donde una solución ofrece más ventajas que las otras, pero también unas desventajas. En general, un sistema con AEP ideal debería tener las siguientes propiedades: 1. El impacto del AEP a las pérdidas del sistema debería ser mínimo. A lo largo de la operación, el AEP genera pérdidas adicionales, con lo cual, en el caso ideal, el AEP debería trabajar por un pequeño intervalo de tiempo, solo durante los tránsitos; la otra opción es tener el AEP constantemente activo pero, por la compensación del rizado de la corriente de bobina, se generan pérdidas innecesarias. 2. El AEP debería ser activado inmediatamente para minimizar la desviación de la tensión de salida. Para conseguir una activación casi instantánea, el sistema puede ser informado por la carga antes del escalón o el sistema puede observar la corriente del condensador de salida, debido a que es la primera variable del estado que actúa a la perturbación de la corriente de salida. De esa manera, el AEP es activado con casi cero error de la tensión de salida, logrando una menor desviación de la tensión de salida. 3. El AEP debería ser desactivado una vez que el nuevo régimen permanente es detectado para evitar los transitorios adicionales de establecimiento. La mayoría de las soluciones de SoA estiman la duración del transitorio, que puede provocar un transitorio adicional si la estimación no se ha hecho correctamente (por ejemplo, si la corriente de bobina del convertidor principal tiene un nivel superior o inferior al necesitado, el regulador lento del convertidor principal tiene que compensar esa diferencia una vez que el AEP es desactivado). Otras soluciones de SoA observan las variables de estado, asegurando que el sistema llegue al nuevo régimen permanente, o pueden ser informadas por la carga. 4. Durante el transitorio, como mínimo un subsistema, o bien el convertidor principal o el AEP, debería operar en el lazo cerrado. Implementando un sistema en el lazo cerrado, preferiblemente el subsistema AEP por su ancho de banda elevado, se incrementa la robustez del sistema a los parásitos. Además, el AEP puede operar con cualquier tipo de corriente de carga. Las soluciones que funcionan en el lazo abierto suelen preformar el control de balance de carga con mínimo tiempo, así reducen la duración del transitorio y tienen un impacto menor a las pérdidas del sistema. Por otro lado, esas soluciones demuestran una alta sensibilidad a las tolerancias y parásitos de los componentes. 5. El AEP debería inyectar la corriente a la salida en una manera controlada, así se reduce el riesgo de unas corrientes elevadas y potencialmente peligrosas y se incrementa la robustez del sistema bajo las perturbaciones de la tensión de entrada. Ese problema suele ser relacionado con los sistemas donde el AEP es implementado como un convertidor auxiliar. El convertidor auxiliar es diseñado para una potencia baja, con lo cual, los dispositivos elegidos son de baja corriente/potencia. Si la corriente no es controlada, bajo un pico de tensión de entrada provocada por otro parte del sistema (por ejemplo, otro convertidor conectado al mismo bus), se puede llegar a un pico en la corriente auxiliar que puede causar la perturbación de tensión de salida e incluso el fallo de los dispositivos del convertidor auxiliar. Sin embargo, cuando la corriente es controlada, usando control del pico de corriente o control con histéresis, la corriente auxiliar tiene el control con prealimentación (feed-forward) de tensión de entrada y la corriente es definida y limitada. Por otro lado, si la solución utiliza el control de balance de carga, el sistema puede actuar de forma deficiente si la tensión de entrada tiene un valor diferente del nominal, provocando que el AEP inyecta/toma más/menos carga que necesitada. 6. Escalabilidad del sistema a convertidores multifase. Como ya ha sido comentado anteriormente, para las aplicaciones VRM por la corriente de carga elevada, el convertidor principal suele ser implementado como multifase para distribuir las perdidas entre las fases y bajar el estrés térmico de los dispositivos. Para asegurar el reparto de las corrientes, normalmente un control de modo corriente es usado. Las soluciones de SoA que usan VMC son limitadas a la implementación con solo una fase. Esta tesis propone un nuevo método de control del flujo de energía por el AEP y el convertidor principal. El concepto propuesto se basa en la inyección controlada de la corriente auxiliar al nodo de salida donde la amplitud de la corriente es n-1 veces mayor que la corriente del condensador de salida con las direcciones apropiadas. De esta manera, el AEP genera un condensador virtual cuya capacidad es n veces mayor que el condensador físico y reduce la impedancia de salida. Como el concepto propuesto reduce la impedancia de salida usando el AEP, el concepto es llamado Output Impedance Correction Circuit (OICC) concept. El concepto se desarrolla para un convertidor tipo reductor síncrono multifase con control modo de corriente CMC (incluyendo e implementación con una fase) y puede operar con la tensión de salida constante o con AVP. Además, el concepto es extendido a un convertidor de una fase con control modo de tensión VMC. Durante la operación, el control de tensión de salida de convertidor principal y control de corriente del subsistema OICC están siempre cerrados, incrementando la robustez a las tolerancias de componentes y a los parásitos del cirquito y permitiendo que el sistema se pueda enfrentar a cualquier tipo de la corriente de carga. Según el método de control propuesto, el sistema se puede encontrar en dos estados: durante el régimen permanente, el sistema se encuentra en el estado Idle y el subsistema OICC esta desactivado. Por otro lado, durante el transitorio, el sistema se encuentra en estado Activo y el subsistema OICC está activado para reducir la impedancia de salida. El cambio entre los estados se hace de forma autónoma: el sistema entra en el estado Activo observando la corriente de condensador de salida y vuelve al estado Idle cunado el nuevo régimen permanente es detectado, observando las variables del estado. La validación del concepto OICC es hecha aplicándolo a un convertidor tipo reductor síncrono con dos fases y de 30W cuyo condensador de salida tiene capacidad de 140μF, mientras el factor de multiplicación n es 15, generando en el estado Activo el condensador virtual de 2.1mF. El subsistema OICC es implementado como un convertidor tipo reductor síncrono con PCMC. Comparando el funcionamiento del convertidor con y sin el OICC, los resultados demuestran que se ha logrado una reducción de la desviación de tensión de salida con factor 12, tanto con funcionamiento básico como con funcionamiento AVP. Además, los resultados son comparados con un prototipo de referencia que tiene la misma etapa de potencia y un condensador de salida físico de 2.1mF. Los resultados demuestran que los dos sistemas tienen el mismo comportamiento dinámico. Más aun, se ha cuantificado el impacto en las pérdidas del sistema operando bajo una corriente de carga pulsante y bajo DVS. Se demuestra que el sistema con OICC mejora el rendimiento del sistema, considerando las pérdidas cuando el sistema trabaja con la carga pulsante y con DVS. Por lo último, el condensador de salida de sistema con OICC es mucho más pequeño que el condensador de salida del convertidor de referencia, con lo cual, por usar el concepto OICC, la densidad de energía se incrementa. En resumen, las contribuciones principales de la tesis son: • El concepto propuesto de Output Impedance Correction Circuit (OICC), • El control a nivel de sistema basado en el método usado para cambiar los estados de operación, • La implementación del subsistema OICC en lazo cerrado conjunto con la implementación del convertidor principal, • La cuantificación de las perdidas dinámicas bajo la carga pulsante y bajo la operación DVS, y • La robustez del sistema bajo la variación del condensador de salida y bajo los escalones de carga consecutiva. ABSTRACT Development of new technologies allows engineers to push the performance of the integrated circuits to its limits. New generations of processors, DSPs or FPGAs are able to process information with high speed and high consumption or to wait in low power mode with minimum possible consumption. This huge variation in power consumption and the short time needed to change from one level to another, affect the specifications of the Voltage Regulated Module (VRM) that supplies the IC. Furthermore, additional mandatory features, such as Adaptive Voltage Positioning (AVP) and Dynamic Voltage Scaling (DVS), impose opposite trends on the design of the VRM power stage. In order to cope with high load-step amplitudes, the output capacitor of the VRM power stage output filter is drastically oversized, penalizing power density and the efficiency during the DVS operation. Therefore, the ongoing research trend is directed to improve the dynamic response of the VRM while reducing the size of the output capacitor. The output capacitor reduction leads to a smaller cost and longer life-time of the system since the big bulk capacitors, usually implemented with OSCON capacitors, may not be needed to achieve the desired dynamic behavior. An additional advantage is that, by reducing the output capacitance, dynamic voltage scaling (DVS) can be performed faster and with smaller stress on the power stage, since the needed amount of charge to change the output voltage is smaller. The dynamic behavior of the system with a linear control (Voltage mode control, VMC, Peak Current Mode Control, PCMC,…) is limited by the converter switching frequency and filter size. The reduction of the output capacitor can be achieved by increasing the switching frequency of the converter, thus increasing the bandwidth of the system, and/or by applying advanced non-linear controls. Applying nonlinear control, the system variables get saturated in order to reach the new steady-state in a minimum time, thus the output filter, more specifically the output inductor current slew-rate, determines the output voltage response. Therefore, by reducing the output inductor value, the inductor current reaches faster the new steady state, so a smaller amount of charge is taken from the output capacitor during the transient. The drawback of this approach is that the system efficiency is penalized due to increased switching losses and RMS currents. In order to achieve both the output capacitor reduction and high system efficiency, while satisfying strict dynamic specifications, a Multiphase converter system is adopted as a standard for VRM applications. In order to ensure the current sharing among the phases, the multiphase converter is usually implemented with current mode control. In order to overcome the limitation imposed by the output filter, the second possibility to reduce the output capacitor is to apply Topologic modifications of the basic power stage topology in order to increase the slew-rate of the inductor current and, therefore, reduce the transient duration. Since the transient is reduced, smaller amount of charge is taken from the output capacitor under the same load current, thus, the output capacitor can be reduced to achieve the same output voltage deviation. The third possibility to reduce the output capacitor of the converter is to introduce an additional energy path (AEP) to compensate the charge unbalance of the output capacitor, consequently reducing the transient time and output voltage deviation. Doing so, during the steady-state operation the system has high efficiency because the main low-bandwidth converter is designed to operate at moderate switching frequency, to meet the static requirements, whereas the dynamic behavior during the transients is determined by the high-bandwidth auxiliary energy path. The auxiliary energy path can be implemented as a resistive path, as a Linear regulator, LR, or as a switching converter. The first two implementations provide higher bandwidth, at the expense of increasing losses during the transient. On the other hand, the switching converter implementation presents lower bandwidth, limited by the auxiliary converter switching frequency, though it produces smaller losses compared to the two previous implementations. Depending on the application, the implementation and the control strategy of the system, there is a variety of proposed solutions in the State-of-the-Art (SoA), having different features where one solution offers some advantages over the others, but also some disadvantages. In general, an ideal additional energy path system should have the following features: 1. The impact on the system losses should be minimal. During its operation, the AEP generates additional losses, thus ideally, the AEP should operate for a short period of time, only when the transient is occurring; the other option is to have the AEP constantly on, but due to the inductor current ripple compensation at the output, unnecessary losses are generated. 2. The AEP should be activated nearly instantaneously to prevent bigger output voltage deviation. To achieve near instantaneous activation, the converter system can be informed by the load prior to the load-step or the system can observe the output capacitor current, which is the first system state variable that reacts on the load current perturbation. In this manner, the AEP is turned on with near zero output voltage error, providing smaller output voltage deviation. 3. The AEP should be deactivated once the new steady state is reached to avoid additional settling transients. Most of the SoA solutions estimate duration of the transient which may cause additional transient if the estimation is not performed correctly (e.g. if the main converter inductor current has higher or lower value than needed, the slow regulator of the main converter needs to compensate the difference after the AEP is deactivated). Other SoA solutions are observing state variables, ensuring that the system reaches the new steady state or they are informed by the load. 4. During the transient, at least one subsystem, either the main converter or the AEP, should be in closed-loop. Implementing a closed loop system, preferably the AEP subsystem, due its higher bandwidth, increases the robustness under system tolerances and circuit parasitic. In addition, the AEP can operate with any type of load. The solutions that operate in open loop usually perform minimum time charge balance control, thus reducing the transient length and minimizing the impact on the losses, however they are very sensitive to tolerances and parasitics. 5. The AEP should inject current at the output in a controlled manner, thus reducing the risk of high and potentially damaging currents and increasing robustness on the input voltage deviation. This issue is mainly related to the systems where AEP is implemented as auxiliary converter. The auxiliary converter is designed for small power and, as such, the MOSFETs are rated for small power/currents. If the current is not controlled, due to the some unpredicted spike in input voltage caused by some other part of the system (e.g. different converter), it may lead to a current spike in auxiliary current which will cause the perturbation of the output voltage and even failure of the switching components of auxiliary converter. In the case when the current is controlled, using peak CMC or Hysteretic Window CMC, the auxiliary converter has inherent feed-forwarding of the input voltage in current control and the current is defined and limited. Furthermore, if the solution employs charge balance control, the system may perform poorly if the input voltage has different value than the nominal, causing that AEP injects/extracts more/less charge than needed. 6. Scalability of the system to multiphase converters. As commented previously, in VRM applications, due to the high load currents, the main converters are implemented as multiphase to redistribute losses among the modules, lowering temperature stress of the components. To ensure the current sharing, usually a Current Mode Control (CMC) is employed. The SoA solutions that are implemented with VMC are limited to a single stage implementation. This thesis proposes a novel control method of the energy flow through the AEP and the main converter system. The proposed concept relays on a controlled injection of the auxiliary current at the output node where the instantaneous current value is n-1 times bigger than the output capacitor current with appropriate directions. Doing so, the AEP creates an equivalent n times bigger virtual capacitor at the output, thus reducing the output impedance. Due to the fact that the proposed concept reduces the output impedance using the AEP, it has been named the Output Impedance Correction Circuit (OICC) concept. The concept is developed for a multiphase CMC synchronous buck converter (including a single phase implementation), operating with a constant output voltage and with AVP feature. Further, it is extended to a single phase VMC synchronous buck converter. During the operation, the main converter voltage loop and the OICC subsystem capacitor current loop is constantly closed, increasing the robustness under system tolerances and circuit parasitic and allowing the system to operate with any load-current shape or pattern. According to the proposed control method, the system operates in two states: during the steady-state the system is in the Idle state and the OICC subsystem is deactivated, while during the load-step transient the system is in the Active state and the OICC subsystem is activated in order to reduce the output impedance. The state changes are performed autonomously: the system enters in the Active state by observing the output capacitor current and it returns back to the Idle state when the steady-state operation is detected by observing the state variables. The validation of the OICC concept has been done by applying it to a 30W two phase synchronous buck converter with 140μF output capacitor and with the multiplication factor n equal to 15, generating during the Active state equivalent output capacitor of 2.1mF. The OICC subsystem is implemented as single phase PCMC synchronous buck converter. Comparing the converter operation with and without the OICC the results demonstrate that the 12 times reduction of the output voltage deviation is achieved, for both basic operation and for the AVP operation. Furthermore, the results have been compared to a reference prototype which has the same power stage and a fiscal output capacitor of 2.1mF. The results show that the two systems have the same dynamic behavior. Moreover, an impact on the system losses under the pulsating load and DVS operation has been quantified and it has been demonstrated that the OICC system has improved the system efficiency, considering the losses when the system operates with the pulsating load and the DVS operation. Lastly, the output capacitor of the OICC system is much smaller than the reference design output capacitor, therefore, by applying the OICC concept the power density can be increased. In summary, the main contributions of the thesis are: • The proposed Output Impedance Correction Circuit (OICC) concept, • The system level control based on the used approach to change the states of operation, • The OICC subsystem closed-loop implementation, together with the main converter implementation, • The dynamic losses under the pulsating load and the DVS operation quantification, and • The system robustness on the capacitor impedance variation and consecutive load-steps.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

This paper presents a primary-parallel secondaryseries multicore forward microinverter for photovoltaic ac-module application. The presented microinverter operates with a constant off-time boundary mode control, providing MPPT capability and unity power factor. The proposed multitransformer solution allows using low-profile unitary turns ratio transformers. Therefore, the transformers are better coupled and the overall performance of the microinverter is improved. Due to the multiphase solution, the number of devices increases but the current stress and losses per device are reduced contributing to an easier thermal management. Furthermore, the decoupling capacitor is split among the phases, contributing to a low-profile solution without electrolytic capacitors suitable to be mounted in the frame of a PV module. The proposed solution is compared to the classical parallel-interleaved approach, showing better efficiency in a wide power range and improving the weighted efficiency.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

La presente tesis doctoral aborda el estudio de un nuevo material mineral, compuesto principalmente por una matriz de yeso (proveniente de un conglomerante industrial basado en sulfato de calcio multifase) y partículas de aerogel de sílice hidrófugo mesoporoso, compatibilizadas mediante un surfactante polimérico, debido a su alto carácter hidrófugo. La investigación se centra en conocer los factores que influyen en las propiedades mecánicas y conductividad térmica del material compuesto generado. Este estudio pretende contribuir al conocimiento sobre el desarrollo de nuevos morteros de elevado aislamiento térmico que puedan ser utilizados en la rehabilitación energética de edificios de viviendas existentes, debido a que estos representan gran parte del consumo energético del parque de viviendas de España, aunque también a nivel internacional. De los materiales utilizados para desarrollar los morteros estudiados, el yeso, además de ser un material muy abundante, especialmente en España, requiere una menor cantidad de energía para la fabricación de un conglomerante (debido a una menor temperatura de fabricación), en comparación con el cemento o la cal, por lo que presenta una menor huella de carbono que estos últimos. Por otro lado, el aerogel de sílice hidrófugo mesoporoso es, de acuerdo con la documentación disponible, el material que posee actualmente la mayor capacidad de aislamiento térmico en el mercado. El desarrollo de nuevos morteros minerales con una capacidad de aislamiento térmico mayor que los materiales aislantes utilizados tradicionalmente, tiene una aplicación relevante en los casos de rehabilitación energética de edificios históricos y patrimoniales, en los que se requiere la aplicación del aislamiento por el interior de la fachada, ya que este tipo de soluciones tienen el inconveniente de reducir el espacio habitable de las áreas involucradas, especialmente en zonas climáticas en las que el aislamiento térmico puede suponer un espesor considerable, por lo que es ideal utilizar materiales de altas prestaciones de aislamiento térmico capaces de aportar el mismo nivel de aislamiento (o incluso mayor), pero en un espesor considerablemente menor. La investigación se desarrolla en tres etapas: bibliográfica, experimental y de simulación. La primera etapa, parte del estudio de la bibliografía existente, relacionada con materiales aislantes, incluyendo soluciones basadas, tanto en morteros aislantes, como en paneles de aislamiento térmico. La segunda, de carácter experimental, se centra en estudiar la influencia de la microestrucrura y macroestructura, del nuevo material mineral, en las propiedades físicas elementales, mecánicas y conductividad térmica del compuesto. La tercera etapa, mediante una simulación del consumo energético, consiste en cuantificar teóricamente el potencial ahorro energético que puede aportar este material en un caso de rehabilitación energética en particular. La investigación experimental se centró principalmente en conocer los factores principales que influyen en las propiedades mecánicas y conductividad térmica de los materiales compuestos minerales desarrollados en esta tesis. Para ello, se llevó a cabo una caracterización de los materiales de estudio, así como el desarrollo de distintas muestras de ensayo, de tal forma que se pudo estudiar, tanto la hidratación del yeso en los compuestos, como su posterior microestructura y macroestructura, aspectos fundamentales para el entendimiento de las propiedades mecánicas y conductividad térmica del compuesto aislante. De este modo, se pudieron conocer y cuantificar, los factores que influyen en las propiedades estudiadas, aportando una base de conocimiento y entendimiento de este tipo de compuestos minerales con aerogel de sílice hidrófugo, no existiendo estudios publicados hasta el momento de finalización de esta tesis, con la aproximación al material propuesta en este estudio, ni con yeso (basado en sulfato de calcio multifase), ni con otro tipo de conglomerantes. Particularmente, se determinó la influencia que tiene la incorporación de partículas de aerogel de sílice hidrófugo, en grandes proporciones en volumen, en un compuesto mineral basado en distintas fases de sulfato de calcio. No obstante, para llevar a cabo las mezclas, fue necesario utilizar un surfactante para compatibilizar este tipo de partículas, con el conglomerante basado en agua. El uso de este tipo de aditivos tiene una influencia, no solo en el aerogel, sino en las propiedades del compuesto en general, dependiendo de su concentración, por lo que se establecieron dos porcentajes de adición: la primera, determinada a partir de la cantidad mínima necesaria para compatibilizar las mezclas (0,1% del agua de amasado), y la segunda, como límite superior, la concentración utilizada habitualmente a nivel industrial para estabilizar burbujas de aire en hormigones espumados (5%). El surfactante utilizado mostró la capacidad de modificar la superficie del aerogel, cambiando el comportamiento de las partículas frente al agua, permitiendo una invasión parcial de su estructura porosa, por parte del agua de amasado. Este comportamiento supone un aumento muy importante en la relación agua/yeso, afectando el hábito cristalino e influenciando negativamente las propiedades mecánicas de la matriz de yeso, presentando un efecto aún notable a mayor concentración de surfactante (5%). En cuanto a las propiedades finales alcanzadas, fue posible lograr un compuesto mineral ultraligero (200 kg/m3), con alrededor de un 60% de aerogel en volumen y de alta capacidad aislante (0,028 W/m•K), presentando una conductividad térmica notablemente menor que los morteros aislantes del mercado, e incluso también menor que la de los aislantes tradicionales basado en las lanas minerales o EPS; no obstante, con la limitante de presentar bajas propiedades mecánicas, condicionando su posible aplicación futura. Entre los factores principales relacionados con las propiedades mecánicas, se encontró que estas dependen exponencialmente del volumen de yeso en el compuesto; no obstante, factores de segundo orden, como el grado de hidratación, o una mejor distribución del conglomerante entre las partículas de aerogel, debido al aumento de la superficie específica del polvo mineral, pueden aumentar las propiedades mecánicas entre el doble y el triple, dependiendo del volumen de aerogel en cuestión. Además, se encontró que el aerogel, en conjunto con el surfactante, es capaz de introducir una gran cantidad de aire (0,70 m3 por cada m3 de aerogel), que unido al agua evaporada (no consumida por el conglomerante durante la hidratación), el volumen de aire total alcanza, generalmente, un 40%, independientemente de la cantidad de aerogel en la mezcla. De este modo, el aire introducido en la matriz desplaza las proporciones en volumen del aerogel y del yeso, disminuyendo, tanto las propiedades mecánicas, como la capacidad aislante de compuesto mineral. Por otro lado, la conductividad térmica mostró tener una dependencia directa de la contribución de las tres fases principales en el compuesto: yeso, aerogel y aire ocluido. De este modo, se pudo desarrollar un modelo matemático, adaptado de uno existente, capaz de calcular, con bastante precisión, la relación de los tres componentes mencionados, en la conductividad térmica de los compuestos, para el rango de volúmenes y materiales utilizados en esta tesis. Finalmente, la simulación del consumo energético realizada a una vivienda típica de España, de los años 1900 a 1959 (basada en muros de ladrillo macizo), para las zonas climáticas estudiadas (A, D y E), permitió observar el potencial ahorro energético que puede aportar este material, dependiendo de su espesor, como aislamiento interior de los muros de fachada. Particularmente, para la zona A, se determinó un espesor óptimo de 1 cm, mientras que para la zona D y E, 3,5 y 3,9 cm respectivamente. En este sentido, el nuevo material estudiado es capaz de disminuir, entre un 35% y un 80%, el espesor de la capa aislante, en comparación con paneles de lana de roca o los morteros minerales de mayor capacidad aislante del mercado español respectivamente. ABSTRACT The present doctoral thesis studies a new mineral-based composite material, composed by a gypsum matrix (based on an industrial multiphase gypsum binder) and mesoporous hydrophobic silica aerogel particles, compatibilized with a polymeric surfactant due to the high hydrophobic character of the insulating particles. This study pretends to contribute to the development of new composite insulating materials that could be used in energy renovation of existing dwellings, in order to reduce their high energy consumption, as they represent a great part of the total energy consumed in Spain, but also internationally. Between the materials used to develop de studied insulating mortars, gypsum, besides being an abundant material, especially in Spain, requires less energy for the manufacture of a mineral binder (due to lower manufacturing temperatures), compared to lime or cement, thus presenting lower carbon footprint. In other hand, the hydrophobic mesoporous silica aerogel, is, according to the existing references, the material with the highest know insulating capacity in the market. The development of new mineral mortars with higher thermal insulation capacity than traditional insulating materials, presents a relevant application in energy retrofitting of historic and cultural heritage buildings, in which implies that the insulating material should be installed as an internal layer, rather than as an external insulating system. This type of solution involves a reduced internal useful area, especially in climatic zones where the demand for thermal insulation is higher, and so the insulating layer thickness, being idealistic to use materials with very high insulating properties, in order to reach same insulating level (or higher), but in lower thickness than the provided by traditional insulating materials. This research is developed in three main stages: bibliographic, experimental and simulation. The first stage starts by studying the existing references regarding thermally insulating materials, including existing insulating mortars and insulating panels. The second stage, mainly experimental, is centered in the study of the the influence of the microstructure and macrostructure in the physical and mechanical properties, and also in the thermal conductivity of the new mineral-based material. The thirds stage, through energy simulation, consists in theoretically quantifying the energy savings potential that can provide this type of insulating material, in a particular energy retrofitting case study. The experimental research is mainly focused in the study of the factors that influence the mechanical properties and the thermal conductivity of the thermal insulating mineral composites developed in this thesis. For this, the characterization of the studied materials has been performed, as well as the development of several experimental samples, in order to study the hydration of the mineral binder within the composites, but also the final microstructure and macrostructure, fundamental aspects for the understanding of the composite’s mechanical and insulating properties. Thus, is was possible to determine and quantify the factors that influence the studied material properties, providing a knowledge base and understanding of mineral composites that comprises mesoporous hydrophobic silica aerogel particles, being the first study up to date regarding the specific approach of the present study, regarding not just multiphase calcium sulfate plaster, but also other mineral binders. Particularly, the influence of the incorporation of hydrophobic silica aerogel particles, in high volume ratios into a mineral compound, based on different phases of calcium sulfate has been determined. However, to perform mixing, it is necessary to use a surfactant in order to compatibilize these particles with the water-based mineral binder. The use of such additives has an influence, not only in the aerogel, but the overall properties of the compound, so two different surfactant concentration has been studied: the first, the minimum amount of surfactant (used in this thesis) in order to develop the slurries (0.1% concentration of the mixing water), and the second, as the upper limit, the concentration usually used industrially to stabilize air bubbles in foamed concrete (5%). One of the side effects of using such additive, was the modification of the aerogel particles, by changing their behavior in respect to water, generating a partial invasion of the aerogel’s porous structure, by the mixing water. This behavior produces a very important increase in water/binder ratios, affecting the crystal habit and negatively influencing the mechanical properties of the gypsum matrix. This effect further increased when a higher concentration of surfactant (5%) is used. Regarding final materials properties, it was possible to achieve an ultra-lightweight mineral composite (200 kg/m3), with around 60% by volume of aerogel, presenting a very high insulating capacity (0.028 W/m•K), a noticeable lower thermal conductivity compared to the insulating mortars and traditional thermal insulating panels on the market, such as mineral wool or EPS; however, the limiting factor for future’s material application in buildings, is related to the very low mechanical properties achieved. Among the main factors related to the mechanical properties, it has been found an exponential correlation to the volume of gypsum in the composite. However, second-order factors such as the degree of hydration, or a better distribution of the binder between the aerogel particles, due to the increased surface area of the mineral powder, can increase the mechanical properties between two to three times, depending aerogel volume involved. In addition, it was found that the aerogel, together with the surfactant, is able to entrain a large amount of air volume (around 0.70 m3 per m3 of aerogel), which together with the evaporated water (not consumed by the binder during hydration), can reach generally around 40% of entrained air within the gypsum matrix, regardless of the amount of aerogel in the mixture. Thus, the entrained air into the matrix displaces the volume proportions of the aerogel and gypsum, reducing both mechanical and insulating properties of the mineral composite. On the other hand, it has been observed a direct contribution of three main phases into the thermal conductivity of the composite: gypsum, aerogel and entrained air. Thus, it was possible to develop a mathematical model (adapted from an existing one), capable of calculating quite accurate the thermal conductivity of such mineral composites, from the ratio these three components and for the range of volumes and materials used in this thesis. Finally, the energy simulation performed to a typical Spanish dwelling, from the years 1900 to 1959 (mainly constructed with massive clay bricks), within three climatic zones of Spain (A, D and E), showed the energy savings potential that can provide this type of insulating material, depending on the thickness of the applied layer. Particularly, for the climatic A zone, it has been found an optimal layer thickness of 1 cm, while for zone D and E, 3.5 and 3.9 cm respectively. In this manner, the new studied materials is capable of decreasing the thickness of the insulating layer by 35% and 80%, compared with rock wool panels or mineral mortars with the highest insulating performance of the Spanish market respectively.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Hippocampal-based behavioral memories and hippocampal-based forms of synaptic plasticity, such as long-term potentiation, are divisible into short- and long-term phases, with the long-term phase requiring the synthesis of new proteins and mRNA for its persistence. By contrast, it is less clear whether long-term depression (LTD) can be divisible into phases. We here describe that in stable hippocampal organotypic cultures, LTD also is not a unitary event but a multiphase process. A prolonged stimulus of 900 stimuli spaced at 1 Hz for 15 min induces a late phase of LTD, which is protein- and mRNA synthesis-dependent. By contrast, a short train of the same 900 stimuli massed at 5 Hz for 3 min produces only a short-lasting LTD. This short-lasting LTD is capable of capturing late-phase LTD. The 5-Hz stimulus or the prolonged 1-Hz stimulus in the presence of protein synthesis inhibitors each can be transformed into an enduring late phase of depression when the prolonged stimulus is applied to another input in the same population of neurons.