919 resultados para MULTI-ELEMENT ANALYSIS
Resumo:
Hydro-acoustic surveys and coring campaigns at Lake Prespa were carried out between 2007 and 2009. This paper presents hydro-acoustic profiles and provide lithological and chronostratigraphical information from three up to 15.75 m long sediment sequences from the Macedonian side of the lake. The sediment sequences comprise glacial and interglacial sediments likely deposited from the end of Marine Isotope Stage (MIS) 5 to present day. The information implies a distinct change of sedimentation patterns at the Pleistocene/Holocene transition and the establishment of a relatively strong Holocene current system and deposition of channel-related contourite drift in Lake Prespa. Potential causes for the establishment of this current during the Holocene include significant lake level change, reduced winter ice cover, and/or higher aeolian activity.
Resumo:
The rate of uranium accumulation in oceanic sediments from seawater is controlled by bottom water oxygen concentrations and organic carbon fluxes-two parameters that are linked to deep ocean storage of CO2. To investigate glacial-interglacial changes in what is known as authigenic U, we have developed a rapid method for its determination as a simple addition to a procedure for foraminiferal trace element analysis. Foraminiferal calcite acts as a low U substrate (U/Ca < 15 nmol/mol) upon which authigenic U accumulates in reducing sediments. We measured a downcore record of foraminiferal U/Ca from ODP Site 1090 in the South Atlantic and found that U/Ca ratios increase by 70-320 nmol/mol during glacial intervals. There is a significant correlation between U/Ca records of benthic and planktonic foraminiferal species and between U/Ca and bulk sediment authigenic U. These results indicate that elevated U/Ca ratios are attributable to the accumulation of authigenic U coatings in sediments. Foraminiferal Mn/Ca ratios were lower during the glacial intervals, suggesting that the observed U accumulation on the shells is not directly linked to U incorporation into secondary manganese phases. Thus, foraminiferal U/Ca ratios may provide useful information on past changes in sediment redox conditions.