458 resultados para MIDGUT-LYSOZYME


Relevância:

10.00% 10.00%

Publicador:

Resumo:

A cDNA encoding a cytochrome P450 enzyme was isolated from a cDNA library of the corpora allata (CA) from reproductively active Diploptera punctata cockroaches. This P450 from the endocrine glands that produce the insect juvenile hormone (JH) is most closely related to P450 proteins of family 4 and was named CYP4C7. The CYP4C7 gene is expressed selectively in the CA; its message could not be detected in the fat body, corpora cardiaca, or brain, but trace levels of expression were found in the midgut and caeca. The levels of CYP4C7 mRNA in the CA, measured by ribonuclease protection assays, were linked to the activity cycle of the glands. In adult females, CYP4C7 expression increased immediately after the peak of JH synthesis, reaching a maximum on day 7, just before oviposition. mRNA levels then declined after oviposition and during pregnancy. The CYP4C7 protein was produced in Escherichia coli as a C-terminal His-tagged recombinant protein. In a reconstituted system with insect NADPH cytochrome P450 reductase, cytochrome b5, and NADPH, the purified CYP4C7 metabolized (2E,6E)-farnesol to a more polar product that was identified by GC-MS and by NMR as (10E)-12-hydroxyfarnesol. CYP4C7 converted JH III to 12-trans-hydroxy JH III and metabolized other JH-like sesquiterpenoids as well. This ω-hydroxylation of sesquiterpenoids appears to be a metabolic pathway in the corpora allata that may play a role in the suppression of JH biosynthesis at the end of the gonotrophic cycle.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

High hydrostatic pressures (1–2 kbar), combined with low, nondenaturing concentrations of guanidine hydrochloride (GdmHCl) foster disaggregation and refolding of denatured and aggregated human growth hormone and lysozyme, and β-lactamase inclusion bodies. One hundred percent recovery of properly folded protein can be obtained by applying pressures of 2 kbar to suspensions containing aggregates of recombinant human growth hormone (up to 8.7 mg/ml) and 0.75 M GdmHCl. Covalently crosslinked, insoluble aggregates of lysozyme could be refolded to native, functional protein at a 70% yield, independent of protein concentration up to 2 mg/ml. Inclusion bodies containing β-lactamase could be refolded at high yields of active protein, even without added GdmHCl.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The isolation and study of Anopheles gambiae genes that are differentially expressed in development, notably in tissues associated with the maturation and transmission of the malaria parasite, is important for the elucidation of basic molecular mechanisms underlying vector–parasite interactions. We have used the differential display technique to screen for mRNAs specifically expressed in adult males, females, and midgut tissues of blood-fed and unfed females. We also screened for mRNAs specifically induced upon bacterial infection of larval stage mosquitoes. We have characterized 19 distinct cDNAs, most of which show developmentally regulated expression specificity during the mosquito life cycle. The most interesting are six new sequences that are midgut-specific in the adult, three of which are also modulated by blood-feeding. The gut-specific sequences encode a maltase, a V-ATPase subunit, a GTP binding protein, two different lectins, and a nontrypsin serine protease. The latter sequence is also induced in larvae subjected to bacterial challenge. With the exception of a mitochondrial DNA fragment, the other 18 sequences constitute expressed genomic sequence tags, 4 of which have been mapped cytogenetically.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Within hours after the ingestion of a blood meal, the mosquito midgut epithelium synthesizes a chitinous sac, the peritrophic matrix. Plasmodium ookinetes traverse the peritrophic matrix while escaping the mosquito midgut. Chitinases (EC 3.2.1.14) are critical for parasite invasion of the midgut: the presence of the chitinase inhibitor, allosamidin, in an infectious blood meal prevents oocyst development. A chitinase gene, PgCHT1, recently has been identified in the avian malaria parasite P. gallinaceum. We used the sequence of PgCHT1 to identify a P. falciparum chitinase gene, PfCHT1, in the P. falciparum genome database. PfCHT1 differs from PgCHT1 in that the P. falciparum gene lacks proenzyme and chitin-binding domains. PfCHT1 was expressed as an active recombinant enzyme in Escherichia coli. PfCHT1 shares with PgCHT1 a substrate preference unique to Plasmodium chitinases: the enzymes cleave tri- and tetramers of GlcNAc from penta- and hexameric oligomers and are unable to cleave smaller native chitin oligosaccharides. The pH activity profile of PfCHT1 and its IC50 (40 nM) to allosamidin are distinct from endochitinase activities secreted by P. gallinaceum ookinetes. Homology modeling predicts that PgCHT1 has a novel pocket in the catalytic active site that PfCHT1 lacks, which may explain the differential sensitivity of PfCHT1 and PgCHT1 to allosamidin. PfCHT1 may be the ortholog of a second, as yet unidentified, chitinase gene of P. gallinaceum. These results may allow us to develop novel strategies of blocking human malaria transmission based on interfering with P. falciparum chitinase.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Griffonia simplicifolia leaf lectin II (GSII), a plant defense protein against certain insects, consists of an N-acetylglucosamine (GlcNAc)-binding large subunit with a small subunit having sequence homology to class III chitinases. Much of the insecticidal activity of GSII is attributable to the large lectin subunit, because bacterially expressed recombinant large subunit (rGSII) inhibited growth and development of the cowpea bruchid, Callosobruchus maculatus (F). Site-specific mutations were introduced into rGSII to generate proteins with altered GlcNAc binding, and the different rGSII proteins were evaluated for insecticidal activity when added to the diet of the cowpea bruchid. At pH 5.5, close to the physiological pH of the cowpea bruchid midgut lumen, rGSII recombinant proteins were categorized as having high (rGSII, rGSII-Y134F, and rGSII-N196D mutant proteins), low (rGSII-N136D), or no (rGSII-D88N, rGSII-Y134G, rGSII-Y134D, and rGSII-N136Q) GlcNAc-binding activity. Insecticidal activity of the recombinant proteins correlated with their GlcNAc-binding activity. Furthermore, insecticidal activity correlated with the resistance to proteolytic degradation by cowpea bruchid midgut extracts and with GlcNAc-specific binding to the insect digestive tract. Together, these results establish that insecticidal activity of GSII is functionally linked to carbohydrate binding, presumably to the midgut epithelium or the peritrophic matrix, and to biochemical stability of the protein to digestive proteolysis.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Immunizations of mice with plasmid DNAs encoding ovalbumin (OVA), human Ig, and hen egg lysozyme were compared with doses of soluble protein (without adjuvant) that induced similar IgG responses. The route of immunization influenced the magnitude of the antibody (Ab) response in that intradermal (i.d.) injection elicited higher IgG Ab levels than i.m. injection in both DNA- and protein-immunized mice. Although total IgG levels were similar to soluble protein controls, the avidity of the anti-OVA Abs generated by DNA immunization were 100- and 1,000-fold higher via the i.m. or i.d. route, respectively. However, despite the generation of high-avidity Ab in DNA-immunized mice, germinal centers could not be detected in either DNA- or protein-immunized mice. Examination of the IgG subclass response showed that IgG2a was induced by i.m. DNA immunization, coinciding with elevated interferon γ production, whereas a dominant and elevated IgG1 response, coinciding with detectable interleukin 4 production, was generated after i.d. immunization with DNA or soluble OVA and hen egg lysozyme but not human Ig protein. As expected, cytotoxic T cell (CTL) responses could be detected only after DNA immunization. I.d. immunization produced the strongest CTL responses early (2 weeks) but was similar to i.m. later. Therefore, DNA immunization can differ from protein immunization by its ability to induce rapid CTL responses and higher avidity Ab, both of which are advantageous for vaccination.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Substitutions or deletions of domain II loop residues of Bacillus thuringiensis δ-endotoxin CryIAb were constructed using site-directed mutagenesis techniques to investigate their functional roles in receptor binding and toxicity toward gypsy moth (Lymantria dispar). Substitution of loop 2 residue N372 with Ala or Gly (N372A, N372G) increased the toxicity against gypsy moth larvae 8-fold and enhanced binding affinity to gypsy moth midgut brush border membrane vesicles (BBMV) ≈4-fold. Deletion of N372 (D3), however, substantially reduced toxicity (>21 times) as well as binding affinity, suggesting that residue N372 is involved in receptor binding. Interestingly, a triple mutant, DF-1 (N372A, A282G and L283S), has a 36-fold increase in toxicity to gypsy moth neonates compared with wild-type toxin. The enhanced activity of DF-1 was correlated with higher binding affinity (18-fold) and binding site concentrations. Dissociation binding assays suggested that the off-rate of the BBMV-bound mutant toxins was similar to that of the wild type. However, DF-1 toxin bound 4 times more than the wild-type and N372A toxins, and it was directly correlated with binding affinity and potency. Protein blots of gypsy moth BBMV probed with labeled N372A, DF-1, and CryIAb toxins recognized a common 210-kDa protein, indicating that the increased activity of the mutants was not caused by binding to additional receptor(s). The improved binding affinity of N372A and DF-1 suggest that a shorter side chain at these loops may fit the toxin more efficiently to the binding pockets. These results offer an excellent model system for engineering δ-endotoxins with higher potency and wider spectra of target pests by improving receptor binding interactions.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Bacterial endospores derive much of their longevity and resistance properties from the relative dehydration of their protoplasts. The spore cortex, a peptidoglycan structure surrounding the protoplasm, maintains, and is postulated to have a role in attaining, protoplast dehydration. A structural modification unique to the spore cortex is the removal of all or part of the peptide side chains from the majority of the muramic acid residues and the conversion of 50% of the muramic acid to muramic lactam. A mutation in the cwlD gene of Bacillus subtilis, predicted to encode a muramoyl-l-alanine amidase, results in the production of spores containing no muramic lactam. These spores have normally dehydrated protoplasts but are unable to complete the germination/outgrowth process to produce viable cells. Addition of germinants resulted in the triggering of germination with loss of spore refractility and the release of dipicolinic acid but no degradation of cortex peptidoglycan. Germination in the presence of lysozyme allowed the cwlD spores to produce viable cells and showed that they have normal heat resistance properties. These results (i) suggest that a mechanical activity of the cortex peptidoglycan is not required for the generation of protoplast dehydration but rather that it simply serves as a static structure to maintain dehydration, (ii) demonstrate that degradation of cortex peptidoglycan is not required for spore solute release or partial spore core rehydration during germination, (iii) indicate that muramic lactam is a major specificity determinant of germination lytic enzymes, and (iv) suggest the mechanism by which the spore cortex is degraded during germination while the germ cell wall is left intact.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Antigen receptors (BCRs) on developing B lymphocytes play two opposing roles—promoting survival of cells that may later bind a foreign antigen and inhibiting survival of cells that bind too strongly to self-antigens. It is not known how these opposing outcomes are signaled by BCRs on immature B cells. Here we analyze the effect of a null mutation in the Syk tyrosine kinase on maturing B cells displaying a transgene-encoded BCR that binds hen egg lysozyme (HEL). In the absence of HEL antigen, HEL-specific BCRs are expressed normally on the surface of Syk-deficient immature B-lineage cells, but this fails to promote maturation beyond the earliest stages of B-lineage commitment. Binding of HEL antigen, nevertheless, triggers phosphorylation of CD79α/β BCR subunits and modulation of receptors from the surface in Syk-deficient cells, but it cannot induce an intracellular calcium response. Continuous binding of low- or high-avidity forms of HEL, expressed as self-antigens, fails to restore the signal needed for maturation. Compared with the effects in the same system of null mutations in other BCR signaling elements, such as CD45 and Lyn kinase, these results indicate that Syk is essential for transmitting a signal that initiates the program of B-lymphocyte maturation.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Leishmania promastigotes synthesize an abundance of phosphoglycans, either attached to the cell surface through phosphatidylinositol anchors (lipophosphoglycan, LPG) or secreted as protein-containing glycoconjugates. These phosphoglycans are thought to promote the survival of the parasite within both its vertebrate and invertebrate hosts. The relative contributions of different phosphoglycan-containing molecules in Leishmania–sand fly interactions were tested by using mutants specifically deficient in either total phosphoglycans or LPG alone. Leishmania donovani promastigotes deficient in both LPG and protein-linked phosphoglycans because of loss of LPG2 (encoding the Golgi GDP-Man transporter) failed to survive the hydrolytic environment within the early blood-fed midgut. In contrast, L. donovani and Leishmania major mutants deficient solely in LPG expression because of loss of LPG1 (involved in biosynthesis of the core oligosaccharide LPG domain) had only a slight reduction in the survival and growth of promastigotes within the early blood-fed midgut. The ability of the LPG1-deficient promastigotes to persist in the midgut after blood meal excretion was completely lost, and this defect was correlated with their inability to bind to midgut epithelial cells in vitro. For both mutants, when phosphoglycan expression was restored to wild-type levels by reintroduction of LPG1 or LPG2 (as appropriate), then the wild-type phenotype was also restored. We conclude, first, that LPG is not essential for survival in the early blood-fed midgut but, along with other secreted phosphoglycan-containing glycoconjugates, can protect promastigotes from the digestive enzymes in the gut and, second, that LPG is required to mediate midgut attachment and to maintain infection in the fly during excretion of the digested blood meal.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

To test a different approach to understanding the relationship between the sequence of part of a protein and its conformation in the overall folded structure, the amino acid sequence corresponding to an α-helix of T4 lysozyme was duplicated in tandem. The presence of such a sequence repeat provides the protein with “choices” during folding. The mutant protein folds with almost wild-type stability, is active, and crystallizes in two different space groups, one isomorphous with wild type and the other with two molecules in the asymmetric unit. The fold of the mutant is essentially the same in all cases, showing that the inserted segment has a well-defined structure. More than half of the inserted residues are themselves helical and extend the helix present in the wild-type protein. Participation of additional duplicated residues in this helix would have required major disruption of the parent structure. The results clearly show that the residues within the duplicated sequence tend to maintain a helical conformation even though the packing interactions with the remainder of the protein are different from those of the original helix. It supports the hypothesis that the structures of individual α-helices are determined predominantly by the nature of the amino acids within the helix, rather than the structural environment provided by the rest of the protein.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Water is the natural medium for protein folding, which is also used in all in vitro studies. In the present work, we posed, and answered affirmatively, a question of whether it is possible to fold correctly a typical protein in a nonaqueous solvent. To this end, unfolded and reduced hen egg-white lysozyme was refolded and reoxidized in glycerol containing varying amounts of water. The unfolded/reduced enzyme was found to regain spontaneously substantial catalytic activity even in the nearly anhydrous solvent; for example, the refolding yield in 99% glycerol was still some one-third of that in pure water, and one-half of that was regained even in 99.8% glycerol. The less than full recovery of the enzymatic activity in glycerol is, as in water, because of competing protein aggregation during the refolding. Lysozyme reoxidation in glycerol was successfully mediated by two dissimilar oxidizing systems, and the refolding yield was markedly affected by the pH of the last aqueous solution before the transfer into glycerol. No recovery of the lysozyme activity was observed when the refolding/reoxidation reaction was carried out in the denaturing solvent dimethyl sulfoxide. This study paves the way for a systematic investigation of the solvent effect on protein folding and demonstrates that water is not a unique milieu for this process.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Several unanswered questions in T cell immunobiology relating to intracellular processing or in vivo antigen presentation could be approached if convenient, specific, and sensitive reagents were available for detecting the peptide–major histocompatibility complex (MHC) class I or class II ligands recognized by αβ T cell receptors. For this reason, we have developed a method using homogeneously loaded peptide–MHC class II complexes to generate and select specific mAb reactive with these structures using hen egg lysozyme (HEL) and I-Ak as a model system. mAbs specific for either HEL-(46–61)–Ak or HEL-(116–129)–Ak have been isolated. They cross-react with a small subset of I-Ak molecules loaded with self peptides but can nonetheless be used for flow cytometry, immunoprecipitation, Western blotting, and intracellular immunofluorescence to detect specific HEL peptide–MHC class II complexes formed by either peptide exposure or natural processing of native HEL. An example of the utility of these reagents is provided herein by using one of the anti-HEL-(46–61)–Ak specific mAbs to visualize intracellular compartments where I-Ak is loaded with HEL-derived peptides early after antigen administration. Other uses, especially for in vivo tracking of specific ligand-bearing antigen-presenting cells, are discussed.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Trypanosoma brucei, the protozoan parasite causing sleeping sickness, is transmitted by a tsetse fly vector. When the tsetse takes a blood meal from an infected human, it ingests bloodstream form trypanosomes that quickly differentiate into procyclic forms within the fly's midgut. During this process, the parasite loses the 107 molecules of variant surface glycoprotein that formed its surface coat, and it develops a new coat composed of several million procyclin molecules. Procyclins, the products of a small multigene family, are glycosyl phosphatidylinositol-anchored proteins containing characteristic amino acid repeats at the C terminus [either EP (EP procyclin, a form of procyclin rich in Glu-Pro repeats) or GPEET (GPEET procyclin, a form of procyclin rich in Glu-Pro-Glu-Glu-Thr repeats)]. We have used a sensitive and accurate mass spectrometry method to analyze the appearance of different procyclins during the establishment of midgut infections in tsetse flies. We found that different procyclin gene products are expressed in an orderly manner. Early in the infection (day 3), GPEET2 is the only procyclin detected. By day 7, however, GPEET2 disappears and is replaced by several isoforms of glycosylated EP, but not the unglycosylated isoform EP2. Unexpectedly, we discovered that the N-terminal domains of all procyclins are quantitatively removed by proteolysis in the fly, but not in culture. These findings suggest that one function of the protease-resistant C-terminal domain, containing the amino acid repeats, is to protect the parasite surface from digestive enzymes in the tsetse fly gut.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

We introduce a computational method to optimize the in vitro evolution of proteins. Simulating evolution with a simple model that statistically describes the fitness landscape, we find that beneficial mutations tend to occur at amino acid positions that are tolerant to substitutions, in the limit of small libraries and low mutation rates. We transform this observation into a design strategy by applying mean-field theory to a structure-based computational model to calculate each residue's structural tolerance. Thermostabilizing and activity-increasing mutations accumulated during the experimental directed evolution of subtilisin E and T4 lysozyme are strongly directed to sites identified by using this computational approach. This method can be used to predict positions where mutations are likely to lead to improvement of specific protein properties.