951 resultados para MANGROVE FORESTS
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Examined litterfall and litter standing crops in Altitudinal forest (AF and Semideciduous forest (SF) at Serra do Japi, Jundiai, Sao Paulo State. Total litterfall was 7 t ha-1 y-1 for AF: 4.9 leaves, 1.8 woody, 0.13 flower, 0.16 fruits; and the total for SF was 8.6 t ha-1 y-1; 5.5 leaves, 2.1 woody, 0.5 flower, 0.4 fruits. Litter standing crop was 5.5 t ha-1 y-1 for the two forest sites studied with a turnover coefficient (K1) of 1.3 for AF and 1.6 for SF. Litterfall occurred throughout the year but was greater during the dry season (August-September); seasonality of litter and leaf fall was greater in SF than in AF. -from Author
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
We studied the diet composition and overlap of Scarlet Ibises (Eudocimus ruber) and Little Blue Herons (Egretta caerulea in a mangrove swamp in southeast Brazil during the 1996-1997 breeding season, which occurs during the rainiest period. Crabs comprised 95% of all prey taken by the ibises and 80% of the prey of the herons, Nevertheless, diet overlap was small (similar to 30%) due to ibises feeding mostly on Uca spp. and Eurythium limosum crabs, which were taken from their burrows; the herons fed on the arboreal and semi-arboreal Aratus Pisonii and Metasesarma rubripes crabs. Divergent hunting strategies of ibises (tactile foragers) and herons visually-oriented predators) explains the diet segregation when preying on an ecologically diverse crab guild, but it is unclear why herons prey rarely on fiddler crabs. Scarlet Ibises bred successfully while feeding oil estuarine organisms living in low salinities in the mangroves, showing that mangroves may be adequate foraging habitats for chick-rearing ibises during periods of low salinity.
Resumo:
The prospection of biological control agents in similar environments to the microbe application improves the chances of microorganisms establishment added to the environment. The low survival of these beneficial microorganisms added to hydroponic environment is a problem for the growth promotion and root rot biological control success in hydroponic crops. Because of the environmental similarity between hydroponic systems and mangrove ecosystems, the aim of this work was to evaluate the ability of mangrove microbes to control root rot caused by Pythium aphanidermatum and to improve plant growth in hydroponic cucumbers. Among the 28 strains evaluated for disease control in small-hydroponic system using cucumber seedlings, Gordonia rubripertincta SO-3B-2 alone or in combination with Pseudomonas stutzeri (MB-P3A- 49, MB-P3-C68 and SO-3L-3), and Bacillus cereus AVIC-3-6 increased the seedlings survival and were subsequently evaluated in hydroponic cucumbers in a greenhouse. Bacillus cereus AVIC-3-6 protected the plants from stunting caused by the pathogen and Gordonia rubripertincta SO-3B-2 and Pseudomonas stutzeri MB-P3A-49 increased the plant growth. We concluded that microorganisms from mangroves are useful as biocontrol agents and for improving plant growth in hydroponic crops.
Resumo:
Robert Mohlenbrock's guide to the national forests of the central U.S. provides the traveling naturalist with a wealth of information on the wide array of national forest lands in the heart of the country. Part of a three-volume series of field guides, this volume covers the states of Louisiana, Minnesota, Missouri, Montana, Nebraska, New Mexico, South Dakota, Texas, and Wyoming. While most of the forests are along the western and eastern borders of the Great Plains, readers will find a detailed travelog for a National Forest within a day's drive of most areas within the region. While not the focus of this volume, a brief mention of the National Grasslands of the Great Plains would have made it more comprehensive for the traveling naturalist.
Resumo:
In Hawaii, invasive plants have the ability to alter litter-based food chains because they often have litter traits that differ from native species. Additionally, abundant invasive predators, especially those representing new trophic levels, can reduce prey. The relative importance of these two processes on the litter invertebrate community in Hawaii is important, because they could affect the large number of endemic and endangered invertebrates. We determined the relative importance of litter resources, represented by leaf litter of two trees, an invasive nitrogen-fixer, Falcataria moluccana, and a native tree, Metrosideros polymorpha, and predation of an invasive terrestrial frog, Eleutherodactylus coqui, on leaf litter invertebrate abundance and composition. Principle component analysis revealed that F. moluccana litter creates an invertebrate community that greatly differs from that found in M. polymorpha litter. We found that F. moluccana increased the abundance of non-native fragmenters (Amphipoda and Isopoda) by 400% and non-native predaceous ants (Hymenoptera: Formicidae) by 200%. E. coqui had less effect on the litter invertebrate community; it reduced microbivores by 40% in F. moluccana and non-native ants by 30% across litter types. E. coqui stomach contents were similar in abundance and composition in both litter treatments, despite dramatic differences in the invertebrate community. Additionally, our results suggest that invertebrate community differences between litter types did not cascade to influence E. coqui growth or survivorship. In conclusion, it appears that an invasive nitrogen-fixing tree species has a greater influence on litter invertebrate community abundance and composition than the invasive predator, E. coqui.
Resumo:
Sediment cores are an essential tool for the analysis of the dynamics of mangrove succession. Coring was used to correlate changes in depositional environments and lateral sedimentary facies with discrete stages of forest succession at the Cananeia-Iguape Coastal System in southeastern Brazil. A local level successional pattern was examined based on four core series T1) a sediment bank; T2) a smooth cordgrass Spartina alterniflora bank; T3) an active mangrove progradation fringe dominated by Laguncularia racemosa, and; T4) a mature mangrove forest dominated by Avicennia schaueriana. Cores were macroscopically described in terms of color, texture, sedimentary structure and organic components. The base of all cores exhibited a similar pattern suggesting common vertical progressive changes in depositional conditions and subsequent successional colonization pattern throughout the forest. The progradation zone is an exposed bank, colonized by S. alterniflora. L. racemosa, replaces S. alterniflora as progradation takes place. As the substrate consolidates A. schaueriana replaces L. racemosa and attains the greatest structural development in the mature forest. Cores collected within the A. schaueriana dominated stand contained S. alterniflora fragments near the base, confirming that a smooth cordgrass habitat characterized the establishment and early seral stages. Cores provide a reliable approach to describe local-level successional sequences in dynamic settings subject to drivers operating on multiple temporal and spatial scales where spatial heterogeneity can lead to multiple equilibria and where similar successional end-points may be reached through convergent paths.
Resumo:
The crab Ucides cordatus and the red mangrove Rhizophora mangle are endemic mangrove species and potential bio-accumulators of metals. This study quantified the accumulation of six metals (Cd, Cr, Cu, Hg, Mn and Pb) in different organs (claw muscle, hepatopancreas and gills) of U. cordatus, as well as in different maturation stages of the leaves (buds, green mature, and pre-abscission senescent) of R. mangle. Samples were collected from mangrove areas in Cubatao, state of Sao Paulo, a heavily polluted region in Brazil. Data for metal contents in leaves were evaluated by one-way ANOVA; while for crabs a factorial ANOVA was used to investigate the effect of different tissues, animal size and the interactions between them. Means were compared by Tukey test at five percent, and the association between the metal concentrations in each crab organ, depending on the size, was evaluated by Pearson's linear correlation coefficient (r). Concentrations of Pb and Hg were undetectable for the different leaf stages and crab tissues, while Cd concentrations were undetectable in the leaf stages. In general, the highest accumulation of metals in R. mangle leaves occurred in pre-abscission senescent and green mature leaves, except for Cu, which was found in the highest concentrations in buds and green mature leaves. For the crab, Cd, Cu, Cr and Mn were present in concentrations above the detection limit, with the highest accumulation in the hepatopancreas, followed by the gills. Cu was accumulated mostly in the gills. Patterns of bioaccumulation between the crab and the mangrove tree differed for each metal, probably due to the specific requirements of each organism for essential metals. However, there was a close and direct relationship between metal accumulation in the mangrove trees and in the crabs feeding on them. Tissues of R. mangle leaves and U. cordatus proved effective for monitoring metals, acting as important bioindicators of mangrove areas contaminated by various metals. (C) 2012 Elsevier Inc. All rights reserved.
Resumo:
Here we embark in a deep metagenomic survey that revealed the taxonomic and potential metabolic pathways aspects of mangrove sediment microbiology. The extraction of DNA from sediment samples and the direct application of pyrosequencing resulted in approximately 215 Mb of data from four distinct mangrove areas (BrMgv01 to 04) in Brazil. The taxonomic approaches applied revealed the dominance of Deltaproteobacteria and Gammaproteobacteria in the samples. Paired statistical analysis showed higher proportions of specific taxonomic groups in each dataset. The metabolic reconstruction indicated the possible occurrence of processes modulated by the prevailing conditions found in mangrove sediments. In terms of carbon cycling, the sequences indicated the prevalence of genes involved in the metabolism of methane, formaldehyde, and carbon dioxide. With respect to the nitrogen cycle, evidence for sequences associated with dissimilatory reduction of nitrate, nitrogen immobilization, and denitrification was detected. Sequences related to the production of adenylsulfate, sulfite, and H2S were relevant to the sulphur cycle. These data indicate that the microbial core involved in methane, nitrogen, and sulphur metabolism consists mainly of Burkholderiaceae, Planctomycetaceae, Rhodobacteraceae, and Desulfobacteraceae. Comparison of our data to datasets from soil and sea samples resulted in the allotment of the mangrove sediments between those samples. The results of this study add valuable data about the composition of microbial communities in mangroves and also shed light on possible transformations promoted by microbial organisms in mangrove sediments.