954 resultados para MANGANESE OXIDES
Resumo:
We studied how solvent, stirring method, PhIO/MnP molar ratio, presence of water and axial ligand affect the catalytic activities of Mn(TPP)Cl, Mn(MNPP)Cl, Mn(TDCPP)Cl and Mn(TFPP)Cl in the oxidation of cyclohexane by PhIO. A study of the catalytic intermediates in the reaction between Mn(TPP)Cl or Mn(TDCPP)Cl and PhIO was also carried out by UV-Vis and EPR spectroscopies. The reaction of Mn(TPP)Cl with PhIO showed the formation of a mixture of species Mn-IV(OP+ and Mn-V(O)P as intermediates, which were confirmed by the deconvolution of the UV-Vis spectra. Addition of imidazole as cocatalyst favoured the formation of the intermediate species Mn-V(O)P, evidenced by the UV-Vis band at 408 nm. The corresponding EPR spectra gave evidence that in the presence of imidazole, Mn-IV(OP+ species are formed only in very low amounts. For Mn(TDCPP)Cl the dominating intermediate species is Mn-IV(OP+. Addition of imidazole to halogen-substituted MnP systems does not result in increase of the C-ol yields because very stable bis-imidazole-MnP complexes are formed. Anchoring of such MnP on imidazole propyl gel (IPG) results in better catalytic activity because in this case, the catalyst is mono-coordinated to the support and imidazole favours the formation of the intermediate species Mn-V(O)P.
Resumo:
The non-ohmic properties of the 98.90% SnO2+(1-x)%CoO+0.05% Cr2O3+0.05% Nb2O5+x% MnO2 varistor system (all of them in mol %), as well as the influence of the oxidizing and reducing atmosphere on this system were studied in this work. Experimental evidence indicates that the electrical properties of the varistor depend on the defects that occur at the grain boundary and on the adsorbed oxygen species such as O''(2), O'(2), O in this region. Thermal treatments at 900 degreesC in oxygen and nitrogen atmospheres indicated such a dependence with the values of the non-linearity coefficient (alpha) increasing under oxygen atmosphere, being reduced in nitrogen atmosphere and restored after a new treatment in oxygen atmosphere, presenting a reversibility in the process. EDS analysis accomplished by SEM showed the distribution of the oxides in the varistor matrix. (C) 2002 Kluwer Academic Publishers.
Resumo:
Zirconia-ceria powders with 12 mol % of CeO2 doped with 0.3 mol% of iron, copper, manganese and nickel oxides were synthesized by the conventional mixed oxide method. These systems were investigated with regard to the sinterability and electrical properties. Sintering was studied considering the shrinkage rate, densification, grain size, and phase evolution. Small amount of dopant such as iron reduces sintering temperature by over 150degreesC and more than 98% of tetragonal phase was retained at room temperature in samples sintered at 1450degreesC against 1600degreesC to stabilize the tetragonal phase on pure ZrO2-CeO2 system. The electrical conductivity was measured using impedance spectroscopy and the results were reported. The activation energy values calculated from the Arrhenius's plots in the temperature range of 350-700degreesC for intragrain conductivities are 1.04 eV.
Resumo:
The tin dioxide is an n-type semiconductor, which exhibits varistor behavior with high capacity of absorption of energy, whose function is to restrict transitory over-voltages without being destroyed, when it is doped with some oxides. Varistors are used in alternated current fields as well as in continuous current, and it can be applied in great interval of voltages or in great interval of currents. The electric properties of the varistor depend on the defects that happen at the grain boundaries and the adsorption of oxygen. The (98.90-x)%SnO2.0.25%CoO+0.75%MnO2+0.05%Ta2O5+0.05%Tr2O3 systems, in which Tr=La or Nd. Current-voltage measurements were accomplished for determination of the non-linear coefficient were studied. SEM microstructure analysis was made to evaluate the microstructural characteristics of the systems. The results showed that the rare-earth oxides have influenced the electrical behavior presented by the system. (C) 2002 Kluwer Academic Publishers.
Resumo:
The autoxidation of [Ni-II(cyclam)](2+) (cyclam = 1,4,8,11-tetraazacyclotetradecane) and Ni(II)tetraglycine, accelerated by S-IV is studied spectrophotometrically by following the formation of Ni-III complexes.
Resumo:
Reactive pure and manganese-doped (5% and 10 at.%) ceria nanosized powders were prepared by the polymeric precursor technique. Physical properties of powder materials were studied by X-ray diffraction, nitrogen adsorption, and diffuse reflectance infrared Fourier transform spectroscopy. Characterization of powder compacts after fast firing at 1200 degrees C for 5 min was carried out by scanning electron microscopy and impedance spectroscopy measurements. The bulk apparent density of sintered pellets was determined for pellets of different compositions sintered at 1200 degrees C. A gradual decrease of the particle size occurs with increasing doping content. Relatively high values of apparent density were obtained after fast firing doped specimens at 1200 degrees C. DRIFT spectra evidence that a fraction of Mn ions was segregated onto particles surface. The electrical resistivity of sintered pellets reveals different mechanisms of conduction depending on the Mn content. (C) 2005 Elsevier B.V All rights reserved.
Resumo:
Solid state compounds M-4-DMCP, where 4-DMCP is 4-dimethylaminocynnamylidenepyruvate and M represents Mn (II), Co (II), Ni (II), Cu (II), Zn (II) and Pb (II) were prepared. These compounds were studied by thermoanalytical techniques: thermogravimetry (TG), derivative thermogravimetry (DTG), differential scanning calorimetry (DSC), X-ray diffraction powder patterns and complexometric titration with EDTA. From the results obtained by the complexometric titration with EDTA, TG, DTG and DSC curves, was possible to establish the hydration degree, stoichiometry and thermal stability of the prepared compounds.
Resumo:
Amorphous thin films, based on different network formers, were processed by a soft chemical process called the polymeric precursor method. The resultant amorphous metal oxides, displayed intense photoluminescence (PL) at room temperature. Heat treatment increases the PL intensity of these materials. Theoretical ab initio calculations are correlated with the observed experimental trends. (C) 2004 Elsevier B.V. All rights reserved.
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
Throughout the world, biomonitoring has become the standard for assessing exposure of individuals to toxic elements as well as for responding to serious environmental public health problems. However, extensive biomonitoring surveys require rapid and simple analytical methods. Thus, a simple and high-throughput method is proposed for the determination of arsenic (As), cadmium (Cd), copper (Cu), manganese (Mn), nickel (Ni), lead (Pb), and selenium (Se) in blood samples by using inductively coupled plasma-mass spectrometry (ICP-MS). Prior to analysis, 200 l of blood samples was mixed with 500 l of 10% v/v tetramethylammonium hydroxide (TMAH) solution, incubated for 10 min, and subsequently diluted to 10 ml with a solution containing 0.05% w/v ethylenediamine tetraacetic acid (EDTA) + 0.005% v/v Triton X-100. After that, samples were directly analyzed by ICP-MS (ELAN DRC II). Rhodium was selected as an internal standard with matrix-matching calibration. Method detection limits were 0.08, 0.04, 0.5, 0.09, 0.12, 0.04, and 0.1 g//L for As, Cd, Cu, Mn, Ni, Pb, and Se, respectively. Validation data are provided based on the analysis of blood samples from the trace elements inter-\comparison program operated by the Institut National de Sante Publique du Quebec, Canada. Additional validation was provided by the analysis of human blood samples by the proposed method and by using electrothermal atomic absorption spectrometry (ETAAS). The method was subsequently applied for the estimation of background metal blood values in the Brazilian population. In general, the mean concentrations of As, Cd, Cu, Mn, Ni, Pb, and Se in blood were 1.1, 0.4, 890, 9.6, 2.1, 65.4, and 89.3 g/L, respectively, and are in agreement with other global populations. Influences of age, gender, smoking habits, alcohol consumption, and geographical variation on the values were also considered. Smoking habits influenced the levels of Cd in blood. The levels of Cu, Mn, and Pb were significantly correlated with gender, whereas Cu and Pb were significantly correlated with age. There were also interesting differences in Mn and Se levels in the population living in the north of Brazil compared to the south.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
This paper reviews the influence of particle size distribution, agglomerates, rearrangement, sintering atmospheres and impurities on the pore evolution of some commonly studied oxides. These factors largely affect sintering mechanisms due to modifications of diffusion coefficients or evaporation-condensation. Very broad particle size distribution leads to grain growth and agglomerates densify first. Rearrangement of particles due to neck asymmetry mainly in the early stage of sintering is responsible for a high rate of densification in the first minutes of sintering by collapse of large pores. Sintering atmospheres play an important role in both densification and pore evolution. The chemical interaction of water molecules with several oxides like MgO, ZnO and SnO2 largely affects surface diffusion. As a consequence, there is an increase in the rates of pore growth and densification for MgO and ZnO and in the rate of pore growth for SnO2. Carbon dioxide does not affect the rate of sintering of MgO but greatly affects both rates of pore growth and densification of ZnO. Oxygen concentration in the atmosphere can especially affect semiconductor oxides but significantly affects the rate of pore growth of SnO2. Impurities like chlorine ions increase the rate of pore growth in MgO due to evaporation of HCl and Mg(OH)Cl, increasing the rate of densification and particle cuboidization. CuO promotes densification in SnO2, and is more effective in dry air. The rate of densification decrease and pore widening are promoted in argon. An inert atmosphere favors SnO2 evaporation due to reduction of CuO. © 1990.