996 resultados para Lysosomal sorting receptor
Resumo:
Activated hepatic stellate cells have been implicated in the fibrogenic process associated with iron overload, both in animal models and in human hemochromatosis. Previous studies have evaluated the role of ferritin/ferritin receptor interactions in the activation of stellate cells and subsequent fibrogenesis; however, the role of transferrin in hepatic stellate cell biology is unknown. This study was designed to identify and characterize the stellate cell transferrin receptor and to evaluate the influence of transferrin on stellate cell activation. Identification and characterization of the stellate cell transferrin receptor was determined by competitive displacement assays. The effect of transferrin on stellate cell activation was assessed using western blot analysis for alpha-smooth muscle actin expression, [H-3]Thymidine incorporation, and real-time RT-PCR for procollagen 1(I) mRNA expression. A specific receptor for rat transferrin was observed on activated but not quiescent stellate cells. Transferrin significantly increased the expression of alpha-smooth muscle actin, but caused a decrease in proliferation. Transferrin induced a significant increase in procollagen alpha1(I) mRNA expression. In conclusion, this study has demonstrated for the first time a specific, high affinity receptor for rat transferrin on activated hepatic stellate cells, which via interaction with transferrin regulates stellate cell activation. This suggests that transferrin may be an important factor in the activation of hepatic stellate cells in conditions of iron overload.
Resumo:
The effects of the native alpha-conotoxin PnIA, its synthetic derivative [ A10L] PnIA and alanine scan derivatives of [ A10L] PnIA were investigated on chick wild type alpha7 and alpha7-L247T mutant nicotinic acetylcholine receptors (nAChRs) expressed in Xenopus oocytes. PnIA and [A10L] PnIA inhibited acetylcholine (ACh)-activated currents at wtalpha7 receptors with IC50 values of 349 and 168 nM, respectively. Rates of onset of inhibition were similar for PnIA and [ A10L] PnIA; however, the rate of recovery was slower for [ A10L] PnIA, indicating that the increased potency of [ A10L] PnIA at alpha7 receptors is conveyed by its slower rate of dissociation from the receptors. All the alanine mutants of [ A10L] PnIA inhibited ACh-activated currents at wtalpha7 receptors. Insertion of an alanine residue between position 5 and 13 and at position 15 significantly reduced the ability of [ A10L] PnIA to inhibit ACh-evoked currents. PnIA inhibited the non-desensitizing ACh-activated currents at alpha7-L247T receptors with an IC50 194 nM. In contrast, [ A10L] PnIA and the alanine mutants potentiated the ACh-activated current alpha7-L247T receptors and in addition [ A10L] PnIA acted as an agonist. PnIA stabilized the receptor in a state that is non-conducting in both the wild type and mutant receptors, whereas [ A10L] PnIA stabilized a state that is non-conducting in the wild type receptor and conducting in the alpha7-L247T mutant. These data indicate that the change of a single amino acid side-chain, at position 10, is sufficient to change the toxin specificity for receptor states in the alpha7-L247T mutant.
Resumo:
Histidines 107 and 109 in the glycine receptor ( GlyR) alpha(1) subunit have previously been identified as determinants of the inhibitory zinc-binding site. Based on modeling of the GlyR alpha(1) subunit extracellular domain by homology to the acetylcholine-binding protein crystal structure, we hypothesized that inhibitory zinc is bound within the vestibule lumen at subunit interfaces, where it is ligated by His(107) from one subunit and His(109) from an adjacent subunit. This was tested by co-expressing alpha(1) subunits containing the H107A mutation with alpha(1) subunits containing the H109A mutation. Although sensitivity to zinc inhibition is markedly reduced when either mutation is individually incorporated into all five subunits, the GlyRs formed by the co-expression of H107A mutant subunits with H109A mutant subunits exhibited an inhibitory zinc sensitivity similar to that of the wild type alpha(1) homomeric GlyR. This constitutes strong evidence that inhibitory zinc is coordinated at the interface between adjacent alpha(1) subunits. No evidence was found for beta subunit involvement in the coordination of inhibitory zinc, indicating that a maximum of two zinc-binding sites per alpha(1)beta receptor is sufficient for maximal zinc inhibition. Our data also show that two zinc-binding sites are sufficient for significant inhibition of alpha(1) homomers. The binding of zinc at the interface between adjacent alpha(1) subunits could restrict intersubunit movements, providing a feasible mechanism for the inhibition of channel activation by zinc.
Resumo:
The origin of intracellular Ca2+ concentration ([Ca2+](i)) transients stimulated by nicotinic ( nAChR) and muscarinic ( mAChR) receptor activation was investigated in fura-2-loaded neonatal rat intracardiac neurons. ACh evoked [Ca2+](i) increases that were reduced to similar to 60% of control in the presence of either atropine ( 1 muM) or mecamylamine ( 3 muM) and to < 20% in the presence of both antagonists. Removal of external Ca2+ reduced ACh-induced responses to 58% of control, which was unchanged in the presence of mecamylamine but reduced to 5% of control by atropine. The nAChR-induced [Ca2+](i) response was reduced to 50% by 10 μM ryanodine, whereas the mAChR-induced response was unaffected by ryanodine, suggesting that Ca2+ release from ryanodine-sensitive Ca2+ stores may only contribute to the nAChR-induced [Ca2+](i) responses. Perforated-patch whole cell recording at - 60 mV shows that the rise in [Ca2+](i) is concomitant with slow outward currents on mAChR activation and with rapid inward currents after nAChR activation. In conclusion, different signaling pathways mediate the rise in [Ca2+](i) and membrane currents evoked by ACh binding to nicotinic and muscarinic receptors in rat intracardiac neurons.
Resumo:
NOR-1/NR4A3 is an orphan member of the nuclear hormone receptor superfamily. NOR-1 and its close relatives Nurr1 and Nur77 are members of the NR4A subgroup of nuclear receptors. Members of the NR4A subgroup are induced through multiple signal transduction pathways. They have been implicated in cell proliferation, differentiation, T-cell apoptosis, chondrosarcomas, neurological disorders, inflammation, and atherogenesis. However, the mechanism of transcriptional activation, coactivator recruitment, and agonist-mediated activation remain obscure. Hence, we examined the molecular basis of NOR-1-mediated activation. We observed that NOR-1 trans-activates gene expression in a cell- and target-specific manner; moreover, it operates in an activation function (AF)-1-dependent manner. The N-terminal AF-1 domain delimited to between amino acids 1 and 112, preferentially recruits the steroid receptor coactivator (SRC). Furthermore, SRC-2 modulates the activity of the AF-1 domain but not the C-terminal ligand binding domain (LBD). Homology modeling indicated that the NOR-1 LBD was substantially different from that of hRORbeta, a closely related AF-2-dependent receptor. In particular, the hydrophobic cleft characteristic of nuclear receptors was replaced with a very hydrophilic surface with a distinct topology. This observation may account for the inability of this nuclear receptor LBD to efficiently mediate cofactor recruitment and transcriptional activation. In contrast, the N-terminal AF-1 is necessary for cofactor recruitment and can independently conscript coactivators. Finally, we demonstrate that the purine anti-metabolite 6-mercaptopurine, a widely used antineoplastic and anti-inflammatory drug, activates NOR-1 in an AF-1-dependent manner. Additional 6-mercaptopurine analogs all efficiently activated NOR-1, suggesting that the signaling pathways that modulate proliferation via inhibition of de novo purine and/or nucleic acid biosynthesis are involved in the regulation NR4A activity. We hypothesize that the NR4A subgroup mediates the genotoxic stress response and suggest that this subgroup may function as sensors that respond to genotoxicity.
Resumo:
Lipid homeostasis is controlled by the peroxisome proliferator-activated receptors (PPARalpha, -beta/delta, and -gamma) that function as fatty acid-dependent DNA-binding proteins that regulate lipid metabolism. In vitro and in vivo genetic and pharmacological studies have demonstrated PPARalpha regulates lipid catabolism. In contrast, PPARgamma regulates the conflicting process of lipid storage. However, relatively little is known about PPARbeta/delta in the context of target tissues, target genes, lipid homeostasis, and functional overlap with PPARalpha and -gamma. PPARbeta/delta, a very low-density lipoprotein sensor, is abundantly expressed in skeletal muscle, a major mass peripheral tissue that accounts for approximately 40% of total body weight. Skeletal muscle is a metabolically active tissue, and a primary site of glucose metabolism, fatty acid oxidation, and cholesterol efflux. Consequently, it has a significant role in insulin sensitivity, the blood-lipid profile, and lipid homeostasis. Surprisingly, the role of PPARbeta/delta in skeletal muscle has not been investigated. We utilize selective PPARalpha, -beta/delta, -gamma, and liver X receptor agonists in skeletal muscle cells to understand the functional role of PPARbeta/delta, and the complementary and/or contrasting roles of PPARs in this major mass peripheral tissue. Activation of PPARbeta/delta by GW501516 in skeletal muscle cells induces the expression of genes involved in preferential lipid utilization, beta-oxidation, cholesterol efflux, and energy uncoupling. Furthermore, we show that treatment of muscle cells with GW501516 increases apolipoprotein-A1 specific efflux of intracellular cholesterol, thus identifying this tissue as an important target of PPARbeta/delta agonists. Interestingly, fenofibrate induces genes involved in fructose uptake, and glycogen formation. In contrast, rosiglitazone-mediated activation of PPARgamma induces gene expression associated with glucose uptake, fatty acid synthesis, and lipid storage. Furthermore, we show that the PPAR-dependent reporter in the muscle carnitine palmitoyltransferase-1 promoter is directly regulated by PPARbeta/delta, and not PPARalpha in skeletal muscle cells in a PPARgamma coactivator-1-dependent manner. This study demonstrates that PPARs have distinct roles in skeletal muscle cells with respect to the regulation of lipid, carbohydrate, and energy homeostasis. Moreover, we surmise that PPARgamma/delta agonists would increase fatty acid catabolism, cholesterol efflux, and energy expenditure in muscle, and speculate selective activators of PPARbeta/delta may have therapeutic utility in the treatment of hyperlipidemia, atherosclerosis, and obesity.
Resumo:
The outcome of dendritic cell (DC) presentation of Ag to T cells via the TCR/MHC synapse is determined by second signaling through CD80/86 and, importantly, by ligation of costimulatory ligands and receptors located at the DC and T cell surfaces. Downstream signaling triggered by costimulatory molecule ligation results in reciprocal DC and T cell activation and survival, which predisposes to enhanced T cell-mediated immune responses. In this study, we used adenoviral vectors to express a model tumor Ag (the E7 oncoprotein of human papillomavirus 16) with or without coexpression of receptor activator of NF-kappaB (RANK)/RANK ligand (RANKL) or CD40/CD40L costimulatory molecules, and used these transgenic DCs to immunize mice for the generation of E7-directed CD8(+) T cell responses. We show that coexpression of RANK/RANKL, but not CD40/CD40L, in E7-expressing DCs augmented E7-specific IFN-gamma-secreting effector and memory T cells and E7-specific CTLs. These responses were also augmented by coexpression of T cell costimulatory molecules (RANKL and CD40L) or DC costimulatory molecules (RANK and CD40) in the E7-expressing DC immunogens. Augmentation of CTL responses correlated with up-regulation of CD80 and CD86 expression in DCs transduced with costimulatory molecules, suggesting a mechanism for enhanced T cell activation/survival. These results have generic implications for improved tumor Ag-expressing DC vaccines, and specific implications for a DC-based vaccine approach for human papillomavirus 16-associated cervical carcinoma.
Resumo:
O receptor do ácido Hialurônico é uma glicoproteína da membrana plasmática, sendo o principal o CD44, e está expresso em vários tipos de células onde possui a função de adesão celular. OBJETIVO: Estudar a possibilidade de empregar o método imunohistoquímico para identificar a distribuição dos receptores de ácido hialurônico ao longo da prega vocal humana. MATERIAL E MÉTODOS: Foram ressecadas as pregas vocais normais de um indivíduo de 23 anos, sexo masculino, cor negra. As lâminas foram analisadas por meio de estudo histomorfométrico, comparando-se a intensidade das cores nas camadas superficial, média e profunda da lâmina própria. Nas lâminas silanizadas foi utilizado método imunohistoquímico, sendo avaliadas através de microscopia óptica com aumento 40 vezes, obtendo coloração marrom onde houve a reação com receptor para ácido hialurônico. RESULTADOS: Os achados imunohistoquímicos mostraram presença de receptores para ácido hialurônico no epitélio de cobertura da prega vocal tendo maior concentração na região central da prega vocal. CONCLUSÃO: A técnica de imunohistoquímica, utilizada para avaliar a distribuição dos receptores para ácido hialurônico na pregas vocais humanas, mostrou sua disposição em epitélio da prega vocal e predomínio no terço médio, em relação às demais regiões na prega vocal estudada.
Resumo:
Este trabalho aborda o problema do desenho de códigos espácio-temporais para sistemas de comunicação multiple-input multiple-output (MIMO) sem fios. Considera-se o contexto realista e desafiante da recepção não-coerente (a realização do canal é desconhecida no receptor). O detector conhecido como generalized likelihood ratio test (GLRT)é implementado no receptor e, ao contrário da maioria das abordagens actuais, permite-se uma estrutura de correlação arbitrária para o ruído gaussiano de observação. Apresenta-se uma análise teórica para a probabilidade de erro do detector, em ambos os regimes assimptóticos de relação sinal-ruído (SNR) alta e baixa. Essa análise conduz a um critério de optimalidade para desenho de códigos e permite uma re-interpretação geométrica do problema abordado como um problema de empacotamento óptimo num producto Cartesiano de espaço projectivos. A construção dos códigos implica a resolução de um problema de optimização não-linear, não-diferenciável e de dimensão elevada, o qual foi abordado aqui em duas fases. A primeira fase explora uma relaxação convexa do problema original para obter uma estimativa inicial. A segunda fase, refina essa estimativa através de um algoritmo iterativo de descida do gradiente ao longo de geodésicas, explorando-se assim a geometria Riemanniana imposta pelas restricões de potência sobre os códigos espáciotemporais. Mostra-se que o desempenho dos novos códigos obtidos por este método excede o das soluções previamente conhecidas. De facto, para algumas configurações particulares, estas novas constelações atingem o limiar de Rankin e são por isso garantidamente óptimas.
Resumo:
A oferta de serviços baseados em comunicações sem fios tem vindo a crescer exponencialmente na última década. Cada vez mais são exigidas maiores taxas de transmissão assim como uma melhor QoS, sem comprometer a potência de transmissão ou argura de banda disponível. A tecnologia MIMO consegue oferecer um aumento da capacidade destes sistemas sem requerer aumento da largura de banda ou da potência transmitida. O trabalho desenvolvido nesta dissertação consistiu no estudo dos sistemas MIMO, caracterizados pela utilização de múltiplas antenas para transmitir e receber a informação. Com um sistema deste tipo consegue-se obter um ganho de diversidade espacial utilizando códigos espaço-temporais, que exploram simultaneamente o domínio espacial e o domínio do tempo. Nesta dissertação é dado especial ênfase à codificação por blocos no espaço-tempo de Alamouti, a qual será implementada em FPGA, nomeadamente a parte de recepção. Esta implementação é efectuada para uma configuração de antenas 2x1, utilizando vírgula flutuante e para três tipos de modulação: BPSK, QPSK e 16-QAM. Por fim será analisada a relação entre a precisão alcançada na representação numérica dos resultados e os recursos consumidos pela FPGA. Com a arquitectura adoptada conseguem se obter taxas de transferência na ordem dos 29,141 Msimb/s (sem pipelines) a 262,674 Msimb/s (com pipelines), para a modulação BPSK.
Resumo:
In the management of solid waste, pollutants over a wide range are released with different routes of exposure for workers. The potential for synergism among the pollutants raises concerns about potential adverse health effects, and there are still many uncertainties involved in exposure assessment. In this study, conventional (culture-based) and molecular real-time polymerase chain reaction (RTPCR) methodologies were used to assess fungal air contamination in a waste-sorting plant which focused on the presence of three potential pathogenic/toxigenic fungal species: Aspergillus flavus, A. fumigatus, and Stachybotrys chartarum. In addition, microbial volatile organic compounds (MVOC) were measured by photoionization detection. For all analysis, samplings were performed at five different workstations inside the facilities and also outdoors as a reference. Penicillium sp. were the most common species found at all plant locations. Pathogenic/toxigenic species (A. fumigatus and S. chartarum) were detected at two different workstations by RTPCR but not by culture-based techniques. MVOC concentration indoors ranged between 0 and 8.9 ppm (average 5.3 ± 3.16 ppm). Our results illustrated the advantage of combining both conventional and molecular methodologies in fungal exposure assessment. Together with MVOC analyses in indoor air, data obtained allow for a more precise evaluation of potential health risks associated with bioaerosol exposure. Consequently, with this knowledge, strategies may be developed for effective protection of the workers.
Resumo:
Aims Obesity and asthma are widely prevalent and associated disorders. Recent studies of our group revealed that Substance P (SP) is involved in pathophysiology of obese-asthma phenotype in mice through its selective NK1 receptor (NK1-R). Lymphangiogenesis is impaired in asthma and obesity, and SP activates contractile and inflammatory pathways in lymphatics. Our aim was to study whether NK1-R expression was involved in lymphangiogenesis on visceral (VAT) and subcutaneous (SAT) adipose tissues and in the lungs, in obese-allergen sensitized mice. Main methods Diet-induced obese and ovalbumin (OVA)-sensitized Balb/c mice were treated with a selective NK1-R antagonist (CJ 12,255, Pfizer Inc., USA) or placebo. Lymphatic structures (LYVE-1 +) and NK1-R expression were analyzed by immunohistochemistry. A semi-quantitative score methodology was used for NK1-R expression. Key findings Obesity and allergen-sensitization together increased the number of LYVE-1 + lymphatics in VAT and decreased it in SAT and lungs. NK1-R was mainly expressed on adipocyte membranes of VAT, blood vessel areas of SAT, and in lung epithelium. Obesity and allergen-sensitization combined increased the expression of NK1-R in VAT, SAT and lungs. NK1-R antagonist treatment reversed the effects observed in lymphangiogenesis in those tissues. Significance The obese-asthma phenotype in mice is accompanied by increased expression of NK1-R on adipose tissues and lung epithelium, reflecting that SP released during inflammation may act directly on these tissues. Blocking NK1-R affects lymphangiogenesis, implying a role of SP, with opposite physiological consequences in VAT, and in SAT and lungs. Our results provide a clue for a novel SP role in the obese-asthma phenotype.
Resumo:
Organic waste is a rich substrate for microbial growth, and because of that, workers from waste industry are at higher risk of exposure to bioaerosols. This study aimed to assess fungal contamination in two plants handling solid waste management. Air samples from the two plants were collected through an impaction method. Surface samples were also collected by swabbing surfaces of the same indoor sites. All collected samples were incubated at 27◦C for 5 to 7 d. After lab processing and incubation of collected samples, quantitative and qualitative results were obtained with identification of the isolated fungal species. Air samples were also subjected to molecular methods by real-time polymerase chain reaction (RT PCR) using an impinger method to measure DNA of Aspergillus flavus complex and Stachybotrys chartarum. Assessment of particulate matter (PM) was also conducted with portable direct-reading equipment. Particles concentration measurement was performed at five different sizes (PM0.5; PM1; PM2.5; PM5; PM10). With respect to the waste sorting plant, three species more frequently isolated in air and surfaces were A. niger (73.9%; 66.1%), A. fumigatus (16%; 13.8%), and A. flavus (8.7%; 14.2%). In the incineration plant, the most prevalent species detected in air samples were Penicillium sp. (62.9%), A. fumigatus (18%), and A. flavus (6%), while the most frequently isolated in surface samples were Penicillium sp. (57.5%), A. fumigatus (22.3%) and A. niger (12.8%). Stachybotrys chartarum and other toxinogenic strains from A. flavus complex were not detected. The most common PM sizes obtained were the PM10 and PM5 (inhalable fraction). Since waste is the main internal fungal source in the analyzed settings, preventive and protective measures need to be maintained to avoid worker exposure to fungi and their metabolites.
Resumo:
The neuronal-specific cholesterol 24S-hydroxylase (CYP46A1) is important for brain cholesterol elimination. Cyp46a1 null mice exhibit severe deficiencies in learning and hippocampal long-term potentiation, suggested to be caused by a decrease in isoprenoid intermediates of the mevalonate pathway. Conversely, transgenic mice overexpressing CYP46A1 show an improved cognitive function. These results raised the question of whether CYP46A1 expression can modulate the activity of proteins that are crucial for neuronal function, namely of isoprenylated small guanosine triphosphate-binding proteins (sGTPases). Our results show that CYP46A1 overexpression in SH-SY5Y neuroblastoma cells and in primary cultures of rat cortical neurons leads to an increase in 3-hydroxy-3-methyl-glutaryl-CoA reductase activity and to an overall increase in membrane levels of RhoA, Rac1, Cdc42 and Rab8. This increase is accompanied by a specific increase in RhoA activation. Interestingly, treatment with lovastatin or a geranylgeranyltransferase-I inhibitor abolished the CYP46A1 effect. The CYP46A1-mediated increase in sGTPases membrane abundance was confirmed in vivo, in membrane fractions obtained from transgenic mice overexpressing this enzyme. Moreover, CYP46A1 overexpression leads to a decrease in the liver X receptor (LXR) transcriptional activity and in the mRNA levels of ATP-binding cassette transporter 1, sub-family A, member 1 and apolipoprotein E. This effect was abolished by inhibition of prenylation or by co-transfection of a RhoA dominant-negative mutant. Our results suggest a novel regulatory axis in neurons; under conditions of membrane cholesterol reduction by increased CYP46A1 expression, neurons increase isoprenoid synthesis and sGTPase prenylation. This leads to a reduction in LXR activity, and consequently to a decrease in the expression of LXR target genes.
Resumo:
Objectives - This study intended to characterize work environment contamination by particles in 2 waste-sorting plants. Material and Methods - Particles were measured by portable direct-reading equipment. Besides mass concentration in different sizes, data related with the number of particles concentration were also obtained. Results - Both sorting units showed the same distribution concerning the 2 exposure metrics: particulate matter 5 (PM5) and particulate matter 10 (PM10) reached the highest levels and 0.3 μm was the fraction with a higher number of particles. Unit B showed higher (p < 0.05) levels for both exposure metrics. For instance, in unit B the PM10 size is 9-fold higher than in unit A. In unit A, particulate matter values obtained in pre-sorting and in the sequential sorting cabinet were higher without ventilation working. Conclusions - Workers from both waste-sorting plants are exposed to particles. Particle counting provided additional information that is of extreme value for analyzing the health effects of particles since higher values of particles concentration were obtained in the smallest fraction.