936 resultados para Longest Path
Resumo:
We study the role of the thachyonic excitation which emerges from the quantum electrodynamics in two dimensions with Podolsky term. The quantization is performed by using path integral framework and the operator approach.
Resumo:
Starting from linear equations for the complex scalar field, the two- and three-point Green's functions are obtained in the infrared approximation. We show that the infrared singularity factorizes in the vertex function as in spinor QED, reproducing in a simple and straightforward way the result of lengthy perturbative calculations.
Resumo:
Background. Previous studies from our laboratory have shown that luminal perfusion with arginine vasopressin (AVP) stimulates distal tubule secretory potassium flux (J(K)) via V1 receptors (Am J Physiol 278: F809- F816, 2000). In the present work, we investigate the cell signaling mechanism of this process.Methods. In vivo stationary microperfusion was performed in rat cortical distal tubules and luminal K was measured using double K+ resin/reference microelectrodes.Results. In control conditions, J(K) was 0.71 +/- 0.05 nmol. cm(-2).second(-1); this process was inhibited (14%) by 10(-5) mol/L 8-bromo-cyclic adenosine monophosphate (cAMP), and increased by 35% with 10(-8) mol/L phorbol ester [phorbol 12-myristate 13-acetate (PMA), which activates protein kinase C (PKC)]. During luminal perfusion with 10(-11) mol/L AVP, J(K) increased to 0.88 +/- 0.08 nmol. cm(-2).seconds(-1). In the presence of 10(-11) mol/L AVP, J(K) was not affected by 10(-4) mol/L H89, a blocker of protein kinase A (PKA), but was inhibited (45%) by 10(-5) mol/L staurosporine, an inhibitor of PKC, and by 41% during perfusion with 5 x 10(-5) mol/L of the cell Ca2+ chelator bis (2-aminophenoxy) ethane-tetraacetic acid (BAPTA). In order to study the role of Ca2+-dependent K channels in the luminal hormonal action, the tubules were perfused with 5 mmol/L tetraethylammonium chloride (TEA) or 10(-7) mol/L iberiotoxin, in the presence of AVP, and JK was significantly reduced by both agents. Iberiotoxin reduced AVP-stimulated J(K) by 36.4%, and AVP-independent J(K) (after blocking V1 receptors) by only 16%.Conclusion. The results suggest that the luminal V1-receptor effect of AVP on J(K) was mediated by the phospholipase C (PLC)/ Ca2+/PKC signaling path and not by adenylate cyclase/cAMP/PKA, therefore probably acting on maxi-potassium channels.
Resumo:
This paper addresses biometric identification using large databases, in particular, iris databases. In such applications, it is critical to have low response time, while maintaining an acceptable recognition rate. Thus, the trade-off between speed and accuracy must be evaluated for processing and recognition parts of an identification system. In this paper, a graph-based framework for pattern recognition, called Optimum-Path Forest (OPF), is utilized as a classifier in a pre-developed iris recognition system. The aim of this paper is to verify the effectiveness of OPF in the field of iris recognition, and its performance for various scale iris databases. The existing Gauss-Laguerre Wavelet based coding scheme is used for iris encoding. The performance of the OPF and two other - Hamming and Bayesian - classifiers, is compared using small, medium, and large-scale databases. Such a comparison shows that the OPF has faster response for large-scale databases, thus performing better than the more accurate, but slower, classifiers.
Resumo:
Majority of biometric researchers focus on the accuracy of matching using biometrics databases, including iris databases, while the scalability and speed issues have been neglected. In the applications such as identification in airports and borders, it is critical for the identification system to have low-time response. In this paper, a graph-based framework for pattern recognition, called Optimum-Path Forest (OPF), is utilized as a classifier in a pre-developed iris recognition system. The aim of this paper is to verify the effectiveness of OPF in the field of iris recognition, and its performance for various scale iris databases. This paper investigates several classifiers, which are widely used in iris recognition papers, and the response time along with accuracy. The existing Gauss-Laguerre Wavelet based iris coding scheme, which shows perfect discrimination with rotary Hamming distance classifier, is used for iris coding. The performance of classifiers is compared using small, medium, and large scale databases. Such comparison shows that OPF has faster response for large scale database, thus performing better than more accurate but slower Bayesian classifier.
Resumo:
Path formulation can be used to classify and structure efficiently multiparameter bifurcation problems around fundamental singularities: the cores. The non-degenerate umbilic singularities are the generic cores for four situations in corank 2: the general or gradient problems and the ℤ 2-equivariant (general or gradient) problems. Those categories determine an interesting 'Russian doll' type of structure in the universal unfoldings of the umbilic singularities. One advantage of our approach is that we can handle one, two or more parameters using the same framework (even considering some special parameter structure, for instance, some internal hierarchy). We classify the generic bifurcations that occur in those cases with one or two parameters.
Resumo:
This study aimed to determine the best auxiliary trait for indirect selection of soybean grain yield, through path analysis and in avoidance of the adverse effects of multicollinearity and expected response. Seventy-nine F5 soybean genotypes from the cross FT-Cometa x Bossier were used. The populations were distributed on the field was the families inserted with replicated controls. Primary and secondary traits of grain yield were evaluated in four phenotypically superior plants per family. The traits number of pods, height and number of nodes were considered as the most important, showing the best combination of direct effect and genotypic correlation. The number of pods achieved the highest expected gain through the estimation method based on the selection differential. On the other hand, plant height, by the method based on selection intensity, was not a good indicator of the most productive plants.
Resumo:
The swallowing disturbers are defined as oropharyngeal dysphagia when present specifies signals and symptoms that are characterized for alterations in any phases of swallowing. Early diagnosis is crucial for the prognosis of patients with dysphagia and the potential to diagnose dysphagia in a noninvasive manner by assessing the sounds of swallowing is a highly attractive option for the dysphagia clinician. This study proposes a new framework for oropharyngeal dysphagia identification, having two main contributions: a new set of features extract from swallowing signal by discrete wavelet transform and the dysphagia classification by a novel pattern classifier called OPF. We also employed the well known SVM algorithm in the dysphagia identification task, for comparison purposes. We performed the experiments in two sub-signals: the first was the moment of the maximal peak (MP) of the signal and the second is the swallowing apnea period (SAP). The OPF final accuracy obtained were 85.2% and 80.2% for the analyzed signals MP and SAP, respectively, outperforming the SVM results. ©2008 IEEE.
Resumo:
The dual path of insertion concept for removable partial denture (RPD) design may be used in esthetically demanding situations. When compared to conventional RPDs, the main advantage of this design is the minimal use of clasps. This clinical report describes the treatment of a patient with an anterior maxillary edentulous area using a dual path RPD. The diagnostic cast was surveyed to ensure the adequacy of the undercuts on the mesial surfaces of the anterior abutments, where rigid minor connectors were placed. Inverted V-shaped canine cingulum rest seats were prepared to provide resistance to tooth movement during function. The dual path RPD concept allows excellent esthetic results, minimizes tooth preparation, and reduces the tendency toward plaque accumulation in a Kennedy class IV partially edentulous arch. © 2008 by The American College of Prosthodontists.
Resumo:
This paper presents a novel, fast and accurate appearance-based method for infrared face recognition. By introducing the Optimum-Path Forest classifier, our objective is to get good recognition rates and effectively reduce the computational effort. The feature extraction procedure is carried out by PCA, and the results are compared to two other well known supervised learning classifiers; Artificial Neural Networks and Support Vector Machines. The achieved performance asserts the promise of the proposed framework. ©2009 IEEE.
Resumo:
Fraud detection in energy systems by illegal consumers is the most actively pursued study in non-technical losses by electric power companies. Commonly used supervised pattern recognition techniques, such as Artificial Neural Networks and Support Vector Machines have been applied for automatic commercial frauds identification, however they suffer from slow convergence and high computational burden. We introduced here the Optimum-Path Forest classifier for a fast non-technical losses recognition, which has been demonstrated to be superior than neural networks and similar to Support Vector Machines, but much faster. Comparisons among these classifiers are also presented. © 2009 IEEE.
Resumo:
In this work we propose a novel automatic cast iron segmentation approach based on the Optimum-Path Forest classifier (OPF). Microscopic images from nodular, gray and malleable cast irons are segmented using OPF, and Support Vector Machines (SVM) with Radial Basis Function and SVM without kernel mapping. Results show accurate and fast segmented images, in which OPF outperformed SVMs. Our work is the first into applying OPF for automatic cast iron segmentation. © 2010 Springer-Verlag.
Resumo:
The applications of Automatic Vowel Recognition (AVR), which is a sub-part of fundamental importance in most of the speech processing systems, vary from automatic interpretation of spoken language to biometrics. State-of-the-art systems for AVR are based on traditional machine learning models such as Artificial Neural Networks (ANNs) and Support Vector Machines (SVMs), however, such classifiers can not deal with efficiency and effectiveness at the same time, existing a gap to be explored when real-time processing is required. In this work, we present an algorithm for AVR based on the Optimum-Path Forest (OPF), which is an emergent pattern recognition technique recently introduced in literature. Adopting a supervised training procedure and using speech tags from two public datasets, we observed that OPF has outperformed ANNs, SVMs, plus other classifiers, in terms of training time and accuracy. ©2010 IEEE.
Resumo:
Traditional pattern recognition techniques can not handle the classification of large datasets with both efficiency and effectiveness. In this context, the Optimum-Path Forest (OPF) classifier was recently introduced, trying to achieve high recognition rates and low computational cost. Although OPF was much faster than Support Vector Machines for training, it was slightly slower for classification. In this paper, we present the Efficient OPF (EOPF), which is an enhanced and faster version of the traditional OPF, and validate it for the automatic recognition of white matter and gray matter in magnetic resonance images of the human brain. © 2010 IEEE.